Claim Missing Document
Check
Articles

Found 8 Documents
Search
Journal : Journal of Data Science and Its Applications

Classification of Electrocardiogram Signals using Principal Component Analysis and Levenberg Marquardt Backpropagation for Detection Ventricular Tachyarrhythmia Astrima Manik; Adiwijaya Adiwijaya; Dody Qori Utama
Journal of Data Science and Its Applications Vol 2 No 1 (2019): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/jdsa.2019.2.12

Abstract

Abstract Ventricular Tachyarrhythmia (VT) are the primary arrhythmias which are cause of sudden death. For someone who already has symptoms of VT should immediately perform an examination of one of them by using an electrocardiogram (ECG). An electrocardiogram is a recording of the heart's electrical results in a waveform. However, limited ability in analysis and diagnosis of ECG reading is still difficult to do. Therefore, the classification of ECG signals is needed to detect a person, especially those with VT or not. In this research focuses on the classification of VT heartbeats from ECG signals by using median filter method in preprocessing, Principal Component Analysis (PCA) as feature extraction and modified Backpropagation (MBP) as classification. This research used machine learning method that is a neural network with backpropagation modification that is Levenberg Marquardt to speed up network training process. The best VT detection performance results were based on the average accuracy of the overall scheme of 91.67% with the best parameters that principal component=10 and 20, hidden neuron=4, and µ value=0.001 as well training time 1 seconds with a comparison of train data and test data that is 80:20 percent. Keywords: Electrocardiogram, Levenberg Marquardt Backpropagation, Median filter, Principal Component Analysis, and Ventricular Tachyarrhythmia
Sentiment Analysis on Movie Reviews using Information Gain and K-Nearest Neighbor Novelty Octaviani Faomasi Daeli; Adiwijaya Adiwijaya
Journal of Data Science and Its Applications Vol 3 No 1 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.22

Abstract

The huge resources need effectiveness and efficiency, it can be processed by machine learning. There have been many studies conducted using machine learning method and produced quite good performance in sentiment analysis. Some machine learning methods that are often used in general are Naive bayes (NB), K-nearest neighbor (KNN), Support vector machine (SVM), and Random forest methods. Mostly, KNN did not achieve better performance than other machine learning methods in sentiment analysis. In this study, the Polarity v2.0 from Cornell movie review dataset will be used to test KNN with Information gain features selection in order to achieve good performance. The purpose of this research are to find the optimum K for KNN and compare KNN with other methods. KNN with the help of Information gain feature selection becomes the best performance method with 96.8% accuracy compared to the NB, SVM, and Random forest while the optimum K is 3.
Sentiment Analysis of Movie Review using Naïve Bayes Method with Gini Index Feature Selection Riko Bintang Purnomoputra; Adiwijaya Adiwijaya; Untari Novia Wisesty
Journal of Data Science and Its Applications Vol 2 No 2 (2019): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2019.2.36

Abstract

In movie reviews, there is information that determines whether the movie is good or bad. Sentiment analysis is used to process information to determine the polarity of the sentence. With unstructured reviews and a lot of data attributes so that it requires much time and computational capabilities that become a problem in the classification process. To process a lot of data selection features becomes a solution to reduce dimensions so it accelerate the classification process and reduce the occurrence of misclassification. The first Gini Index Text feature selection used to classify documents and successfully enhanced the classifier performance. Multinomial Naïve Bayes (MNNB) is a popular classifier used for document classification however, will the Gini Index Text feature selection able to improve MNNB classification performance. Therefore in this study the author aims to use the Gini Index Text (GIT) for text feature selection with MNNB classifier to classify movie review into positive and negative classes. The data used is IMDB dataset that contains reviews in English sentences, the data will be divided into two parts, training data is 90% and data testing is 10%. The test results prove that the Gini index as a selection feature can increase accuracy where accuracy without feature selection is 56% and with feature selection of 59.54% with an increase of 3.54%.
Cancer Detection based on Microarray Data Classification Using Principal Component Analysis and Functional Link Neural Network Iyon Priyono; Adiwijaya Adiwijaya; Annisa Aditsania
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.52

Abstract

Cancer is a deadly disease caused by abnormal growth of tissue cells that are not controlled in the body. In 2018, according to Globocan data, the number of cancer sufferers has increased from the previous years which was 18.1 million people, with a mortality rate of 9.6 million. In recent years, cancer prediction using DNA microarrays data can help medical experts in analyzing whether a person has cancer or not. DNA microarray data have very large and complex gene expression, therefore a dimensional reduction method is needed. Then, the dimension reduction results will be used for classification into types of cancer or not. In this paper, Principal Component Analysis (PCA) is used as a feature extraction to reduce dimension and Functional Link Neural Network as a classifier. Based on the simulation, the average of accuracy using the FLNN and PCA about 76.08%. Keywords: cancer detection, Microarray data, Functional Link Neural Network, Principal Component Analysis.
Aspect Based Sentiment Analysis on Beauty Product Review Using Random Forest Anggitha Yohana Clara; Adiwijaya Adiwijaya; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.58

Abstract

Cosmetics and beauty products (including skincare) are the products used as body care or face care and used to accentuate the body alure. A product could give diverse sentiment to the consumers including positive and negative sentiment. Many consumers of beauty products are sharing their reviews to help other consumers to find the right products to buy and to give feedback to the brand of the beauty product itself. The number of reviews is inversely proportional to the lack of opinion identification towards product’s aspects. Hence, a study has been conducted to analyze beauty products reviews as toner, serum, sun protection, and exfoliator. The analysis process is conducted aspect based to determine sentiment towards aspect of beauty products based on the reviews. The result is addressed to people using skincare and beauty product brands in deducting consumer’s opinion. The solution to this problem is by using Random Forest with hyperparameters tuning as classification method, and TF-IDF and n-gram as feature extraction methods. The multi-aspect sentiment analysis in this study obtained highest accuracy for 90.48%, precision for 87.27%, recall for 70.13%, and F1-Score for 71.77%.
Classification of Personality based on Beauty Product Reviews Using the TF-IDF and Naïve Bayes (Case Study : Female Daily) Novia Russelia Wassi; Adiwijaya Adiwijaya; Mahendra Dwifebri Purbolaksono
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.61

Abstract

A person's personality is an important parameter to determine the character of each person and also as an assessment in various ways. In this day and age personality can not only be known from psychological tests, but also can be known in various ways. One way is through reviews presented in electronic media. In this study, a person's personality was classified into three "Big Five" personality groups, namely: Openness, Conscientiousness, and Extraversion using the Naïve Bayes method and TF-IDF as Feature Extraction. The results of the classification that have been done get 81% accuracy with preproccessing scenarios using Stemming and Stopword, TF-IDF unigram, and BernoulliNB classifier type.
Comparative Analysis of Support Vector Machine-Recursive Feature Elimination and Chi-Square on Microarray Classification for Cancer Detection with Naïve Bayes Talitha Kayla Amory; Adiwijaya Adiwijaya; Widi Astuti
Journal of Data Science and Its Applications Vol 3 No 2 (2020): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2020.3.62

Abstract

Cancer is a world-famous deadly disease. According to the World Health Organization (WHO), cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. One well-known technique for cancer detection is the DNA microarray technique. DNA microarray technology provides an opportunity for researchers to analyze thousands of gene expression profiles at the same time to determine whether a person has cancer or not. However, one of the problems in DNA microarray data is the large number of features that require feature selection. In overcoming these problems, this study will use the feature selection Support Vector Machine-Recursive Feature Elimination (SVM-RFE) and Chi-Square and use the Naïve Bayes classification method. The accuracy results from using feature selection with those that are not will be compared. The accuracy between using the two feature selection methods will also be compared to find which feature selection method is better when combined with the Naïve Bayes classification method. To get an overall picture of the performance comparison, this study also considers precision, recall, and F1-score. The best accuracy results obtained were 100% lung cancer data with SVM-RFE and Chi-Square, 99.6% ovarian cancer with SVM-RFE, 93.7% breast cancer with SVM-RFE, and 90% colon cancer with SVM- RFE.
Multi Label Topic Classification for Hadith Bukhari in Indonesian Translation using Random Forest Adhitia Wiraguna; said al faraby; Adiwijaya Adiwijaya
Journal of Data Science and Its Applications Vol 4 No 1 (2021): Journal of Data Science and Its Applications
Publisher : Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/jdsa.2021.4.70

Abstract

Hadith is a mandatory thing to be studied and practiced by Muslims. There are many types of teachingsthat humans can take by studying the hadith. To assist Muslims in studying the hadith, a multi labelclassification system is needed to categorize Sahih Bukhari Hadi in Indonesian translation based on threetopics, namely prohibition, advice and information. In building a text classification system, there are variousclassification methods that can be used, in this study using Random Forest (RF). The simplicity of the RFalgorithm and good ability to deal with high dimensional data, make RF a suitable method of textclassification. But, there is not widely known RF capability for the multi label classification. This study usesthe Problem Transformation approach method, namely Binary Relevance (BR) and Label Powerset (LP)to adapt RF in building a multi label classification system. The results showed that the best hamming lossperformance obtained from a system that used BR and does not use stemming which is equal to 0,0663.These results indicate that the BR method is better than the LP method in adapting the RF algorithm toperform multi label classification of hadith data. This is happened because the BR method produces aclassification model of the number of labels in the hadith data and on the other hand, the transformation ofdata from the use of LP makes the data are imbalanced.
Co-Authors A Rakha Ahmad Taufiq Abu Bakar, Muhammad Yuslan Ade Iriani Sapitri Ade Romadhony Ade Sumiahadi, Ade Adhitia Wiraguna Adhitia Wiraguna Aditya Arya Mahesa Adnan Imam Hidayat Adwin Rahmanto Afrian Hanafi Al Faraby, Said Al Mira Khonsa Izzaty Alfian Akbar Gozali Alvi Syah Amalya Citra Pradana Amir Andi Ahmad Irfa ANDI FUTRI HAFSAH MUNZIR Andina Kusumaningrum Andri Saputra Andrian Fakhri Andriyan B Suksmono Anggitha Yohana Clara Aniq Atiqi Aniq Atiqi Rohmawati Anisa Salama Annas Wahyu Ramadhan Annisa Adistania Annisa Aditsania Antika Putri Permata Wardani Aras Teguh Prakasa Ardiansyah, Yusfi Astrid Frillya Septiany Astrima Manik Aziz, Muhammad Maulidan Azmi Hafizha Rahman Zainal Arifin Bambang Riyanto T. Bayu Julianto Bayu Munajat Bayu Munajat Bayu Rahmat Setiaji Bernadus Seno Aji Bernadus Seno Aji Bintang Peryoga Bisma Pradana Brama Hendra Mahendra Chiara Janetra Cakravania Clarisa Hasya Yutika D. R. Suryandari Dana Sulistiyo Kusumo Danang Triantoro Danang Triantoro Murdiansyah Daniel Tanta Christopher Sirait Dany Dwi Prayoga Dany Dwi Prayoga Della Alfarydy Akbar Deni Saepudin Denny Alriza Pratama Desi Sitompul Dewangga, Dhiya Ulhaq Dian Chusnul Hidayati Didi Rosiyadi Didit Adytia Dinda Karlia Destiani Dody Qori Utama Dody Qory Utama Dwi Yanita Apriliyana Dwi Yanita Apriliyana Dwifebri, Mahendra Eko Darwiyanto Eliza Jasin Elza Oktaviana Elza Oktaviana Endro Ariyanto Ergon Rizky Perdana Purba F. A. Yulianto Fachri Pane, Syafrial Fahmi Salman Nurfikri Faris Alfa Mauludy Faris Alfa Mauludy Farudi Erwanda Farudi Erwanda Fathur Rohman Fathurrohman Elkusnandi Fhira Nhita Fikri Rozan Imadudin Firda A. Ma’ruf Firdausi Nuzula Zamzami Firly Juanita Surahman Fuad Ash Shiddiq Gde Agung Brahmana Suryanegara Gheartha, I Gusti Bagus Yogiswara Ghozy Ghulamul Afif Gia Septiana Gia Septiana Gia Septiana Gilang Rachman Perdana Gilang Rachman Perdana Gilang Titah Ramadhani Grace Tika Guntoro Guntoro Guntoro Guntoro Guntoro Guntoro Hadyan Arif Hafidudin . Hafizh Fauzan Hafizh Fauzan Hendro Prasetyo Henri Tantyoko Honakan Honakan I Kadek Haddy W. I Made Riartha Prawira I.G.N.P.Vasu Geramona Ilham Kurnia Syuriadi Ilham Yunirakhman Imadudin, Fikri Rozan Imam Prayoga Indriani Indriani Irene Yulietha Irma Irma Irma Palupi Irwinda Famesa Iyon Priyono Jendral Muhamad Yusuf Zia Ul Haq Jenepte Wisudawati Simanullang K, Kasnaeny Kamal Hasan Mahmud Kemas Muslim Lhaksmana Kemas Rahmat Saleh Raharja Kemas Rahmat Saleh Wiharja Kurnia C Widiastuti Kurniawan W. Handito Laila Putri Lalu Gias Irham Lisa Marianah Lisa Marianah Luke Manuel Daely Mahendra Dwifebri P Mahendra Dwifebri Purbolaksono Mahmud Dwi Sulistiyo Melanida Tagari Melanida Tagari Michael Sianturi Milah Sarmilah Moc. Arif Bijaksana Mochamad Agusta Naofal Hakim Mochammad Naufal Rizaldi Mohamad Irwan Afandi Mohamad Mubarok Mohamad Syahrul Mubarok Mohamad Syahrul Mubarok Mohammad Syahrul Mubarok Monica Triyani Muhammad Afianto Muhammad Enzi Muzakki Muhammad Fauzan Muhammad Feridiansyah Muhammad Ghufran Muhammad Irvan Tantowi Muhammad Kenzi Muhammad Mubarok Muhammad Mujaddid Muhammad Naufal Mukhbit Amrullah Muhammad Nurjaman Muhammad Shiddiq Azis Muhammad Shiddiq Azis Muhammad Surya Asriadie Muhammad Syahrul Mubarok Muhammad Yuslan Abu Bakar Nanda Prayuga Nida Mujahidah Azzahra Nida Mujahidah Azzahra Niken Dwi Wahyu Cahyani Novelty Octaviani Faomasi Daeli Novia Russelia Wassi Nuklianggraita, Tita Nurul Nur Ghaniaviyanto Ramadhan Oscar Ramadhan Pinem, Joshua Pratama Dwi Nugraha Preddy Desmon Purbalaksono, Mahendra Dwifebri Putri, Dinda Rahma Putri, Dita Julaika Raihana Salsabila Darma Wijaya Rendi Kustiawan Reynaldi Ananda Pane Riche Julianti Wibowo Riko Bintang Purnomoputra Riska Chairunisa Rizki Syafaat Amardita Rizky Pujianto Rizma Nurviarelda Roberd Saragih Rosyadi, Ramadhana Said Faraby Satria Mandala Sekar Kinasih Semeidi Husrin Sheila Annisa Shidqi Aqil Naufal Shuni’atul Ma’wa Sigit Bagus Setiawan St.Sukmawati S. Sugeng Hadi Wirasna Suriyanti Suriyanti Syafrial Fachri Pane, Syafrial Fachri Syahrizal Rizkiana Rusamsi Syam, Mukhlisah Syifa Khairunnisa Talitha Kayla Amory Tati LR Mengko Tesha Tasmalaila Hanif Timami Hertza Putrisanni Tita Nurul Nuklianggraita Triyani, Monica Try Moloharto Untari Novia Wisesty Untari Wisesty Untari. N. Wisesty Untary Novia Wisesty Vina Mutiara Purnama Warih Maharani Widi Astuti Widi Astuti Widi Astuti Winda Christina Widyaningtyas Wisnu Adhi Pradana Yana Meinitra Wati Yoga Widi Pamungkas Yuliant Sibaroni Zahra Putri Agusta Zakia Firdha Razak Zulfikar Fauzi