Claim Missing Document
Check
Articles

Found 24 Documents
Search

Effect of Closed and Opened the Door to Temperature on PID-Based Baby Incubator with Kangaroo Mode Kirana, Vanda Catur; Andayani, Dwi Herry; Pudji, Andjar
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 3 No. 3 (2021): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v3i3.245

Abstract

The uneven distribution of the baby incubator temperature can cause the temperature in the baby incubator to be different at each point. The purpose of this study was to analyze the effect of the door closed and opened to the temperature at each point of sensor placement that has been determined. The study was conducted as experimental research design. In this experiment, an Incu Analyzer comparison was used as a calibrator unit, a baby skin temperature thermistor sensor, and four LM35 sensors for baby incubator room temperature with one LM35 sensor as a PID control system carried out by trial-and-error method. Based on the results of measurements was made with the design, when the chamber is open, it produces an average error value of T1 4.083%, T2 6.06%, T3 3.78%, T4 4.88%, and T5 1.48%, while when the chamber is closed, it produces an average error value T1 0.75. %, T2 0.88%, T3 1.15%, T4 0.74%, and T5 0.87%. Measurement of skin temperature using a thermometer has an average error value of 1.1%. The results showed that uneven heat transfer, lack of air distribution, different sensor placements at each point, and non-standard chamber sizes were factors that were uneven at each point. Based on the results of the study, it was found that the use of a working system on this device can be implemented to control the temperature of the baby incubator by knowing the temperature distribution at each point
Design of Vital Sign Monitor with ECG, BPM, and Respiration Rate Parameters Oka, Gede Aditya Mahendra; Pudji, Andjar; Mak’ruf, Muhammad Ridha
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 2 No. 1 (2020): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i1.257

Abstract

Vital sign monitor is a device used to monitor a patient's vital sign, in the form of a heartbeat, pulse, blood pressure, temperature of the heart's pulse form continuously. Condition monitoring in patients is needed so that paramedics know the development of the condition of inpatients who are experiencing a critical period. Electrocardiogram (ECG) is a physiological signal produced by the electrical activity of the heart. Recording heart activity can be used to analyze how the characteristics of the heart. By obtaining respiration from outpatient electrocardiography, which is increasingly being used clinically to practice to detect and characterize the abnormal occurrence of heart electrical behavior during normal daily activities. The purpose of this study is to determine that the value of the Repiration Rate is taken from ECG signals because of its solidity. At the peak of the R ECG it has several respiratory signals such as signals in fluctuations. An ECG can be used to determine breathing numbers. This module utilizes leads ECG signals to 1 lead, namely lead 2, respiration rate taken from the ECG, BPM in humans displayed on a TFT LCD. This research module utilizes the use of filters to obtain ECG signals, and respiration rates to display the results on a TFT LCD. This module has the highest error value of 0.01% compared to the Phantom EKG tool. So this module can be used for the diagnosis process.
Central Monitor Based Personal Computer with SpO2 and Body Temperature Parameters Via Wireless Xbee Pro Oka, I Komang Yogi Mahardika; Pudji, Andjar; Mak’ruf, Muhammad Ridha
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 2 No. 1 (2020): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v2i1.258

Abstract

Central patient monitor that is not real-time and continues will cause inaccuracies monitoring results and also sending data that is still using cable will cause limited distance. The purpose of this research is to design a central monitoring based personal computer via Xbee Pro. The contribution of this research is, the system works in real-time and continues, more parameters, using wireless, longer transmission distances. So that monitoring can be done in real-time and continue via wireless with more distance, then the wireless system uses the Xbee Pro module which has larger output power and uses the same number of wireless modules between transmitter and receiver. Body temperature was measured using the LM35 sensor and oxygen saturation in the blood was measured using the MAX30100 sensor. Data is sent using Xbee Pro and displayed on a personal computer. At the distance of receiving data approximately 25 meters with a wall divider, obtained results of smooth monitoring without any loss of data. The results showed that the average SpO2 error value was 0.34% in module 1 and 0.68% in module 2. The average value of body temperature error was 0.46% in module 1 and 0.72% in module 2. The results of this research can be implemented in a centralized patient monitoring system at the hospital, making it easier for health workers to monitor multiple patients, with the results of monitoring in real-time and continue, more parameters, via wireless with greater distance.
TRAINING OPERATION AND MAINTENANCE OF FETAL DOPPLER TO MAINTAIN THE HEALTH OF MOTHERS AND CHILDREN AT THE COMMUNITY HEALTH CENTER IN THE SOUTH KREMBANGAN, SURABAYA: TRAINING OPERATION AND MAINTENANCE OF FETAL DOPPLER TO MAINTAIN THE HEALTH OF MOTHERS AND CHILDREN AT THE COMMUNITY HEALTH CENTER IN THE SOUTH KREMBANGAN, SURABAYA Ridha Makruf, Muhammad; Pudji, Andjar
Frontiers in Community Service and Empowerment Vol. 4 No. 4 (2025): December
Publisher : Forum Ilmiah Teknologi dan Ilmu Kesehatan (FORITIKES)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ficse.v4i4.113

Abstract

This community service activity focuses on counseling and training related to the operation and maintenance of fetal Doppler devices as an effort to improve maternal and child health services in the South Krembangan Village area, Surabaya. Fetal Doppler is a critical medical device used to monitor fetal heart rate and ensure the well-being of the fetus during pregnancy. However, its effectiveness greatly depends on the users' knowledge and skills, particularly among midwives and health workers at Community Health Centers (Puskesmas). The activity involved structured training sessions combining theoretical explanations and practical demonstrations, aiming to enhance participants’ understanding of safe device operation, routine maintenance procedures, and early detection of equipment malfunctions. The results showed increased competency among participants in both operating the device and performing basic troubleshooting. This initiative not only supports the continuity of quality antenatal care but also strengthens local health capacity in the effort to reduce maternal and infant morbidity and mortality. Continuous follow-up and evaluation are recommended to sustain the impact of the program.