Claim Missing Document
Check
Articles

Found 34 Documents
Search

Peningkatan Literasi Data Guru melalui Pelatihan Penyajian Data di SMAN 7 Takalar Mar'ah, Zakiyah; Aidid, Muhammad Kasim; Muthahharah, Isma; Syalsabila, Annisa
Jurnal Pengabdian Masyarakat Bhinneka Vol. 4 No. 1 (2025): September
Publisher : Bhinneka Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58266/jpmb.v4i1.370

Abstract

Tujuan kegiatan ini adalah untuk memberikan pemahaman dan keterampilan kepada guru SMAN 7 Takalar agar mereka dapat lebih efisien dalam mengelola data hasil belajar siswa, merencanakan pembelajaran, serta membuat laporan dengan menggunakan Microsoft Excel yang sudah tersedia. Microsoft Excel merupakan salah satu perangkat lunak yang sangat penting dalam pengolahan dan penyajian data. Namun, masih banyak siswa SMA dan tenaga kependidikan, yang mengalami kesulitan dalam menggunakan Excel. Sosialisasi dalam kegiatan ini mencakup identifikasi kebutuhan guru, penyuluhan dan diskusi serta penyebaran informasi. Selama pelatihan, para guru diberikan materi secara langsung tentang materi dasar Microsoft Excel, membuat grafik dan diagram serta melakukan simulasi pengolahan data analisis ulangan harian siswa. Kesimpulan kegiatan ini adalah 1) telah memberikan kontribusi yang signifikan dalam peningkatan literasi data melalui pengenalan penyajian data, 2) peserta mampu mengolah dan menyajikan data ujian siswa secara mandiri, 3) penyajian data yang baik sangat penting untuk membantu dalam memahami informasi kompleks serta pada pengambilan keputusan berbasis data.
The Impact of Malnutrition on Infant Mortality Rate in Indonesia: A Spline Regression Approach Muthahharah, Isma; Hidayat, Rahmat
Journal of Mathematics, Computations and Statistics Vol. 8 No. 2 (2025): Volume 08 Nomor 02 (Oktober 2025)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35580/jmathcos.v8i2.9351

Abstract

The Infant Mortality Rate (IMR) in Indonesia is still an important index in assessing the quality of public health. One aspect that is thought to influence the high IMR is malnutrition. One of the objectives of this study is to analyze the relationship between malnutrition and IMR through a nonparametric spline regression approach. The data used in this study are secondary data obtained from the Central Statistics Agency in 2022 with the IMR variable as the dependent variable and the percentage of malnutrition as the independent variable. The spline regression model was chosen because it is able to capture the nonlinear relationship between the variables analyzed. Based on the research results that have been obtained, we can see that the best model is spline regression, namely by selecting three knot points, the coefficient of determination (R^2) value is 23,27%. However, this model still has limitations, such as violations of residual assumptions. Therefore, it is hoped that further research will add or select other variables that may be more relevant in order to improve the quality of the model.
Classification of Regencies/Cities in South Sulawesi Province Based on Business Sectors Using Discriminant Analysis Muthahharah, Isma
Journal of Mathematics: Theory and Applications Vol 7 No 2 (2025): Volume 7, Nomor 2, 2025
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v7i2.5359

Abstract

The purpose of this study is to use the Linear Discriminant Analysis (LDA) method to categorize districts and cities in South Sulawesi Province according to their main economic sectors. The Central Statistics Agency (BPS) of South Sulawesi provided data for the period 2019–2023. The dependent variable was classified according to GDP (GRDP) quartiles within economic sectors, while the independent variables were the Labor Force Participation Rate (LBFR), the Number of Business Units (NBE), and the Open Unemployment Rate (OUR). The findings indicate that the most important factors in group differentiation are TPA and TPT. The classification accuracy was only 37.5%, although the model met important assumptions such as normality, homogeneity of covariance, and the absence of multicollinearity. This suggests that the model should be further improved by adding more in-depth predictors or using more differentiated categorization techniques.
Clustering of Disaster Risk in Indonesian Regions Using Self-Organizing Maps and K-Means Hardianti Hafid; Isma Muthahharah
Journal of Mathematics: Theory and Applications Vol 7 No 2 (2025): Volume 7, Nomor 2, 2025
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v7i2.5365

Abstract

Indonesia is one of the countries with a high level of vulnerability to natural disasters, making accurate risk mapping essential to support mitigation planning. This study aims to cluster the provinces of Indonesia based on disaster occurrence characteristics using a hybrid approach of Self-Organizing Maps (SOM) and K-Means. The data were obtained from the Indonesian National Disaster Management Agency (BNPB), covering the frequency and types of disasters such as floods, extreme weather, eruptions, abrasion, earthquakes, forest/land fires, droughts, and landslides. The SOM representation results were clustered using K-Means, with the optimal number of clusters determined through the evaluation of the Davies–Bouldin index, Silhouette coefficient, and connectivity measure. The analysis revealed that two clusters provided the best separation: Cluster 1 includes most provinces with medium to low multi-hazard risk, while Cluster 2 consists of West Java, Central Java, and East Java, which have high hydrometeorological risk. This hybrid SOM and K-Means approach successfully identifies the spatial patterns of disaster risk and can serve as a reference for the government in formulating region-based mitigation strategies.