Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : The Indonesian Journal of Computer Science

Studi Perbandingan Kombinasi GMI, HSV, KNN, dan CNN pada Klasifikasi Daun Herbal Alfitriana Riska; Purnawansyah; Darwis, Herdianti; Astuti, Wistiani
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3210

Abstract

Tumbuhan herbal memiliki banyak variasi yang dapat dikenali melalui ciri uniknya secara visual. Namun, cara ini sulit diterapkan pada tumbuhan yang memiliki ciri hampir sama. Penelitian ini membandingkan kinerja metode K-Nearest Neighbour (KNN) dan Convolutional Neural Network (CNN) dalam klasifikasi fitur daun herbal yang diekstraksi dengan menggunakan Geometric Moment Invariant (GMI) dan Hue Saturation Value (HSV). Dataset yang digunakan adalah dataset citra daun katuk (Sauropus androgynus) dan daun kelor (Moringa oleifera) dengan skenario citra terang dan citra gelap. Pembagian data untuk tiap skenario adalah 80% untuk training dan 20% untuk testing. Metode KNN diuji menggunakan nilai dan evaluasi kinerja KNN dan CNN meliputi accuracy, precision, recall, dan f1-score. Hasil penelitian menunjukkan bahwa CNN tanpa ekstraksi fitur dan CNN dengan kombinasi ekstraksi fitur HSV memperoleh performa terbaik dengan rata-rata nilai precision, recall, f1-score dan accuracy sebesar 98% untuk skenario gelap maupun terang.
Klasifikasi Penyakit Bawang Merah Menggunakan Naive Bayes dan CNN dengan Fitur GLCM Arfah, Jumrayanti; Purnawansyah; Darwis, Herdianti; Sastra, Ramdan
The Indonesian Journal of Computer Science Vol. 12 No. 3 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i3.3236

Abstract

Tanaman bawang merah merupakan salah satu tanaman penting dalam industri pertanian. Penyakit pada tanaman bawang merah dapat mengakibatkan kerugian yang signifikan bagi petani dan produsen. Penelitian ini bertujuan untuk mengklasifikasikan penyakit bawang merah pada daun bawang merah yang disebabkan oleh bercak ungu dan moler. Pengumpulan data citra bawang merah dilakukan secara langsung yang dilanjutkan dengan tahap pre-processing sebelum pengklasifikasian penyakit pada tanaman bawang merah. Algoritma Naive Bayes dan CNN dengan ekstraksi fitur GLCM digunakan dalam penelitian ini untuk melakukan perbandingan klasifikasi antara dua metode tersebut dalam mengklasifikasikan penyakit tanaman bawang merah yaitu bercak ungu dan moler. Hasil pengujian dengan menggunakan citra sebanyak 160 penyakit moler dan 160 penyakit bercak ungu menunjukkan bahwa kedua algoritma klasifikasi Naive Bayes dan CNN dengan ekstraksi fitur GLCM mampu mengklasifikasikan penyakit moler dan penyakit bercak ungu pada daun bawang merah dengan akurasi yang baik sebesar 100%. Onion plants are one of the important crops in the agricultural industry. Diseases in onion plants can result in significant losses for farmers and producers. This research aims to classify onion diseases on onion leaves caused by priole blotch and molāris. The of onion image data colaction was performed directly, followed by a pre-processing stage before classifying diseases in onion plants. The Naive Bayes algorithm and CNN with GLCM feature extraction are used in this study to compare the classification between the two methods in classifying onion diseases. The test results using a total of 160 priole blotch and 160 molāris diseases show that both the Naive Bayes and CNN classification algorithms with GLCM feature extraction are capable of classifying priole blotch and molāris diseases on onion leaves with a perfect accuracy of 100%.
Klasifikasi Penyakit Bawang Merah Menggunakan Naïve Bayes dan Convolutional Neural Network Dian; Purnawansyah; Darwis, Herdianti; Nurhayati, Lilis
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3265

Abstract

Bawang merah rentan terhadap serangan penyakit yang dapat mengganggu pertumbuhan dan mengakibatkan hasil panen yang tidak maksimal bahkan gagal panen, seperti bercak ungu dan moler. Penelitian ini bertujuan untuk mengklasifikasikan penyakit bawang merah dengan mengimplementasikan meetode naïve bayes (gaussian , bernoulli, dan multinomial) dan CNN pada citra bawang merah yang diekstraksi menggunakan fourier descriptor. Metode FD – CNN memperoleh tingkat accuracy 98% dalam mengklasifikasikan penyakut bawang merah, moler dan bercak ungu, sedangkan metode CNN tanpa menggunakan ekstraksi menghasilkan nilai accuracy sebesar 97%. Adapun pada metode naïve bayes, pengklasifikasian yang memiliki accuracy paling tinggi adalah metode gaussian naïve bayes sebesar 95% sedangkan yang paling rendah yaitu metode bernoulli naïve bayes dengan tingkat accuracy sebesar 42%. Dengan demikian, dapat disimpulkan bahwa CNN, FD-CNN, dan FD-GNB efektif untuk meningkatkan performa klasifikasi pada citra daun bawang merah.
Metode SVM dan Naive Bayes untuk Analisis Sentimen ChatGPT di Twitter Atmajaya, Dedy; Febrianti, Annisa; Darwis, Herdianti
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3341

Abstract

Pertumbuhan pesat platform media sosial telah memberikan jalur baru bagi individu untuk mengungkapkan pendapat dan sentimen mereka. Analisis sentimen dari konten yang dibuat oleh pengguna di platform seperti Twitter menjadi semakin penting dalam memahami opini publik dan tren sosial. Penelitian ini bertujuan untuk membandingkan kinerja dua algoritma machine learning, Support Vector Machine (SVM) dan Naive Bayes, dalam menganalisis sentimen pengguna Twitter mengenai ChatGPT, sebuah model bahasa canggih. Sentimen akan diberi label menggunakan dua alat analisis sentimen yang terkenal, Vader dan Roberta. Penelitian ini menggunakan data Twitter sebanyak 1000 dataset yang terkait dengan ChatGPT dan mengevaluasi akurasi, presisi, dan recall dari model SVM dan Naive Bayes. Hasil penelitian ini menunjukkan perbedaan yang jelas dalam kinerja model: SVM yang digabungkan dengan Vader mencapai tingkat akurasi, presisi, dan recall sebesar 59%, dengan F1-score sebesar 55%. Secara signifikan lebih unggul dibandingkan dengan model sebaliknya, dimana SVM dengan label RoBERTa menghasilkan akurasi sebesar 55%, presisi sebesar 58%, recall sebesar 55%, dan F1-score sebesar 52%. Naive Bayes menunjukkan kinerja yang relatif lebih rendah. Dengan menggunakan Vader, Naïve Bayes mencapai tingkat akurasi dan recall sebesar 47%, presisi sebesar 46%, dan F1-score yang lebih rendah sebesar 32%. Sedangkan, menggunakan RoBERTa dengan Naive Bayes menunjukkan penurunan akurasi menjadi 43%, recall sebesar 43%, presisi sebesar 18%, dan F1-score sebesar 26%. Pengendalian SVM dinilai memiliki kinerja yang lebih unggul dalam mengolah analisis sentimen pengguna Twitter mengenai opini tentang ChatGPT.
Klasifikasi Daun Herbal Menggunakan Metode CNN dan Naïve Bayes dengan Fitur GLCM Adela Regita Azzahra; Purnawansyah; Darwis, Herdianti; Widyawati, Dewi
The Indonesian Journal of Computer Science Vol. 12 No. 4 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i4.3362

Abstract

Tanaman herbal menunjukkan variasi berbagai ukuran dan bentuk yang berbeda untuk setiap jenis. Penelitian ini bertujuan untuk mengklasifikasikan citra daun dari daun katuk (Sauropus Androgynus) dan daun kelor (Moringa). Dalam penelitian ini digunakan Gray Level Co-Occurrence Matrix (GLCM) untuk mengektraksi fitur contrast, correlation, homogeneity, dissimilarity, dan Angular Second Moment (ASM). Adapun pada klasifikasi diterapkan metode Convolutional Neural Network (CNN) dan Naïve Bayes dengan kernel Gaussian, multinomial, dan Bernoulli. Jumlah citra yang digunakan dalam riset ini adalah 480 citra, dengan perincian 80% untuk data training dan 20% sebagai data testing. Berdasarkan hasil pengujian dan perbandingan yang telah dilakukan didapatkan kesimpulan bahwa penerapan metode CNN tanpa ekstraksi fitur terbukti lebih efisien dalam proses klasifikasi citra daun herbal, dengan nilai precision, recall, f1-score dan accuracy mencapai 98% pada situasi cahaya terang.
Analisis Sentiment Publik Mengenai Neuralink dari Twitter dengan Menerapkan Naïve Bayes: Multinomial, Gaussian, dan Complement Azwan Triyadi; Purnawansyah; Darwis, Herdianti
The Indonesian Journal of Computer Science Vol. 13 No. 5 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i5.4278

Abstract

Elon Musk owns the business Neuralink, which attempts to build brain-machine interfaces. This study categorizes public opinion towards the use of Neuralink goods, including whether people agree (positive), disagree (negative), or feel neither way. Without accessing the Twitter API, the Twint Python Libraries were utilised to retrieve a dataset of 3000 using the keyword “neuralink”. What datasets are included in positive, neutral, or negative categories are designated using RoBERTa. Term Frequency Inverse Document Frequency (TF-IDF) is utilized for feature extraction, while Synthetic Minority Over-sampling Technique (SMOTE) is employed to handle class imbalance. Complement Naive Bayes, achieved accuracy of 81%, followed by Multinomial Naive Bayes, which achieved accuracy of 80%, and Gaussian Naive Bayes, which achieved accuracy of 75%. The model Complement Naïve Bayes was used in this study to attain the maximum accuracy, and accuracy increases when employing SMOTE compared to other Naïve bayes variants.