Claim Missing Document
Check
Articles

Found 27 Documents
Search

Evaluating Musculoskeletal Disorder Risk Factors through Quick Exposure Check: A Case Study in a Crumb Rubber Factory Kumala, Andhini; Adelino, Muhammad Ilham; Fitri, Meldia
Journal of Industrial View Vol 6, No 1 (2024): Publikasi Ilmiah Teknik Industri
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jiv.v6i1.11926

Abstract

Manual Material Handling (MMH) encompasses activities such as lifting, moving, carrying, pulling, and lowering materials or finished goods, relying on manual human power. The pressing workstation in the crumb rubber factory is a setting where MMH tasks are performed. Workers at this station are involved in lifting and moving bandelas weighing approximately 35 kg daily, without the aid of assistive devices, thereby exposing them to potential risks of musculoskeletal disorders. This study is designed to assess the work posture of employees at the pressing workstation concerning the risk of musculoskeletal disorders in the crumb rubber factory. The Quick Exposure Check (QEC) method was employed for evaluation, utilizing data collected through the QEC questionnaire from a total of 10 workers. The results showed that 80% of workers were at high risk of developing musculoskeletal disorders, characterized by an exposure level score of more than 70% and requiring improvement and change as quickly as possible. In contrast, 20% of workers showed exposure levels below 70% and required immediate remediation. This research contributes to increasing employee awareness of the risks of GMS and the importance of ergonomic work practices. This increased awareness can contribute to reducing the incidence of injuries and improving the welfare of workers in rubber factories.
Evaluasi Beban Kerja Mental Pekerja yang Terpapar Kebisingan pada Perusahaan Mebel Kontesya, Kamelia; Sari, Andesi Purnama; Ridhana, Ihsan; Adelino, Muhammad Ilham
Go-Integratif : Jurnal Teknik Sistem dan Industri Vol. 5 No. 01 (2024): Go-Integratif : Jurnal Teknik Sistem dan Industri
Publisher : Engineering Faculty at Universitas Singaperbangsa Karawang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35261/gijtsi.v5i01.11238

Abstract

The furniture industry focuses on producing frames, panel doors, windows, and various furniture variations. During its operations, a significant portion of the work involves the use of tools or machines that generate loud noise and require substantial effort. The objective of this research is to identify categories of mental workload on workers and propose feasible improvements. The methods used were the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) and the Rating Scale Mental Effort (RSME). All workers were actively engaged in this study. The results found that all workers were categorized into high and very high levels with a workload score range of 62.67-81.33. The highest influencing indicator was performance (25.45%). These findings were corroborated by the RSME results, where the average score falls within the range of 70-90 out of 150. Based on these results, improvements could be made by increasing the number of workers for job rotation.
Pengukuran Kinerja Supply Chain Management dengan Metode Green SCOR Adelino, Muhammad Ilham; Farid, Mohammad; Fitri, Meldia; Febry, Muhammad
Jurnal Teknologi Dan Sistem Informasi Bisnis Vol 6 No 1 (2024): Januari 2024
Publisher : Prodi Sistem Informasi Universitas Dharma Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jteksis.v6i1.1048

Abstract

The background of this research is the demand for raw materials and the number of sales targets in UMKM Kerupuk Nasi Pak Tatang which have not been fulfilled and the level of product defects which is still high. The research purpose is to determine the performance measurement of supply chain management (SCM) and evaluate the performance measurement based on the lowest score. The method used is the Green SCOR method for determining performance measurements. Data in the form of filling out questionnaires by business owners, the amount of raw materials, the amount of production per month, and the number of defective products. The results showed that the final total value of the Green SCOR performance was 47,066 (marginal level category). Indicators that have a low score are source reliability (number of suppliers according to criteria), deliver responsiveness (length of time for ordering until goods arrive), deliver flexibility (time needed to place additional orders), and return responsiveness (number of complaints received by companies about products). The evaluation given for the number of suppliers is that the company must be able to evaluate each supplier by providing an assessment of the performance results with the AHP method. Evaluation of the length of time for orders to arrive and time for reorders to forecast raw material requirements to optimize order time. The final evaluation for the number of complaints is to provide complaint submission facilities that can be evaluated periodically using the PDCA approach (plan, do, check, action).
Evaluasi Proses Mental Mahasiswa Teknik Industri Menggunakan Pendekatan Uji Statistik Dengan Metodologi RSME Kumala, Andhini; Sari, Aprilita; Atryes, Viola; Adelino, Muhammad Ilham
Jurnal ARTI (Aplikasi Rancangan Teknik Industri) Vol. 19 No. 2 (2024): Jurnal ARTI: Aplikasi Rancangan Teknik Industri
Publisher : Sekolah Tinggi Teknologi Dumai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52072/arti.v19i2.1069

Abstract

Perubahan pada era industri 4.0 yang masif menuntut kemampuan adaptasi dan pengembangan diri yang cepat, termasuk pada kurikulum Teknik Industri. Ketidakmampuan untuk beradaptasi dapat meningkatkan tingkat stres yang mempengaruhi proses mental mahasiswa. Tujuan dari penelitian ini adalah mengevaluasi dan membandingkan perbedaan proses mental yang dialami oleh mahasiswa Teknik Industri secara statistik. Metode yang digunakan adalah uji t-sampel independen dan uji Mann-whitney U. Pengambilan data menggunakan metodologi Rating Scale Mental Scale (RSME). Hasil yang didapatkan adalah empat dari enam indikator memiliki nilai rata-rata yang lebih tinggi pada mata kuliah Teori Probabilitas. Meskipun demikian, nilai p-value pada seluruh indikator melebihi dari tingkat signifikansi. Nilai tersebut menyatakan bahwa tidak ada perbedaan yang signifikan secara statistik antara skor rata-rata kelompok Statistika Industri dan kelompok Teori Probabilitas. Proses mental yang dialami oleh mahasiswa tidak ada hubungannya pemrosesan pengolahan data antara menggunakan perangkat lunak dan tanpa perangkat lunak.
Contemporary Trends in Human Factors and Ergonomics within Engineering Research Adelino, Muhammad Ilham; Zadry, Hilma Raimona; Susanti, Lusi
Jurnal Teknik Industri: Jurnal Keilmuan dan Aplikasi Teknik Industri Vol. 26 No. 1 (2024): June 2024
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9744/jti.26.1.61-76

Abstract

This review explores human factors and ergonomics (HFE) in the engineering subject areas and analyzes research over the last five years across physical, cognitive, and organizational ergonomics and is associated with the Industrial Revolution era. This review aims to identify existing trends in HFE research related to the Industrial Revolution. This study used a systematic four-step methodology and drew from the Science Direct and Scopus databases. The methodology involves conducting a careful literature search, selecting pertinent and suitable literature references, conducting bibliometric analysis, and participating in qualitative discussions. A total of 353 articles are identified for further analysis. Our findings indicate that the current state of Human Factors and Ergonomics (HFE) research remains largely situated within the research paradigm of the Industrial Revolution 3.0 era. Investigations oriented towards the Industrial Revolution 4.0, such as integrating machine learning and artificial intelligence into physical, cognitive, and orga­ni­zational ergonomics, are still limited. The insufficient adoption of these advancements under­scores the necessity for ongoing development of HFE research to leverage these advancements in order to align with the trajectory towards Industry 4.0.
Product Development And Performance of Reinforced Metal Matrix Composite Brake Disc: Modelling, Simulation And Multi-Criteria Decision Making Technique Nanang Fatchurrohman; Gan Wei Kang; Muhammad Ilham Adelino
Spektrum Industri Vol. 19 No. 2: October 2021
Publisher : Universitas Ahmad Dahlan Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/si.v19i2.21951

Abstract

Demand for lightweight and durable components for automotive applications is increasing, such as brake discs. This paper presents an investigation on new material for brake discs which is metal matrix composite (MMC). This new material offers high strength – lightweight performance and high thermal conductivity if applied to automotive brake discs. This paper also explores new designs for brake disc using MMC as the material. The objective of this study is to present a recommendation for new brake disc material and design which can replace the existing one in terms of higher braking performance. Modelling, simulation, and multi-criteria decision making (MCDM) technique were used toselect the best design of MMC brake disc. The results show that Design 6 (with angular grooves) has the best performance at dissipating heat, reaching the highest temperature of 284.66°C and it has the lowest deformation of 0.589 mm. Subsequent analysis using MCDM shows that Deign 6 has the highest normalised priority of 0.2742 or the best alternative. The combination of MMC as the new material and new design can improve thermal and structural performance, hence improving the vehicle braking performance.
Evaluasi Beban Kerja Mental pada Produksi Kerupuk Jangek Menggunakan Uji Wilcoxon Berdasarkan Metodologi NASA-TLX Adelino, Muhammad Ilham
Jurnal ARTI (Aplikasi Rancangan Teknik Industri) Vol. 20 No. 1 (2025): Jurnal ARTI: Aplikasi Rancangan Teknik Industri
Publisher : Sekolah Tinggi Teknologi Dumai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52072/arti.v1i20.1270

Abstract

Beban kerja mental pekerja di rumah produksi kerupuk jangek berkontribusi terhadap efisiensi dan kesehatan pekerja. Permasalahan utama yang dihadapi adalah sifat pekerjaan di rumah produksi kerupuk jangek yang monoton dan berulang, tekanan target produksi yang tinggi, dan kondisi lingkungan kerja yang kurang mendukung, sehingga menimbulkan kelelahan mental dan menurunkan kualitas hasil kerja. Diperlukan pengujian statistik guna menganalisis perbedaan beban kerja mental sebelum dan sesudah bekerja. Penelitian ini bertujuan untuk mengevaluasi perbedaan beban kerja mental yang dialami oleh individu dalam dua kondisi kerja yang berbeda. Metode yang digunakan adalah uji hipotesis berpasangan berbasis metodologi NASA-TLX. Hasil penelitian menunjukkan bahwa dari enam indikator beban kerja mental, hanya Tuntutan Mental (TM) yang mengalami perubahan signifikan setelah bekerja, menandakan peningkatan beban kognitif akibat tingginya kebutuhan fokus dan pengambilan keputusan dalam proses produksi kerupuk jangek. Meskipun indikator lain, seperti Tuntutan Fisik (TF), Tuntutan Waktu (TW), Kinerja (K), Usaha (U), dan Frustrasi (F), tidak menunjukkan perubahan signifikan, peningkatan beban mental yang terus-menerus tetap berpotensi menyebabkan kelelahan kognitif dan menurunkan konsentrasi dalam jangka panjang
KLASIFIKASI RESIKO ERGONOMI MENGGUNAKAN ALGORITMA NAIVE BAYES: BERDASARKAN METODOLOGI QUICK EXPOSURE CHECK (QEC) Adelino, Muhammad Ilham; Farid, Mohammad; Fitri, Meldia
PROFISIENSI : Jurnal Program Studi Teknik Industri Vol 13, No 1 (2025): PROFISIENSI JUNI 2025
Publisher : University of Riau Kepulauan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33373/profis.v13i1.7741

Abstract

This research examines the application of machine learning in forecasting and categorizing ergonomic risk levels. Nonetheless, recent research on the integration of Naïve Bayes machine learning with ergonomics remains limited, particularly concerning the Quick Exposure Check (QEC) technique. This study aims to categorize ergonomic risk levels and evaluate the accuracy of classification through machine learning techniques. The employed model is the Naïve Bayes algorithm, grounded in the Quick Exposure Check (QEC) methodology. Data were gathered from evaluations of body posture and occupational characteristics, including strength and duration, and subsequently classified by risk level. The findings of this investigation indicated a total accuracy of 99.00% ± 1.41%, with a micro-average of 99.01%. This degree of accuracy is within the high category. The model exhibits flawless precision and recall for the Medium and High-risk categories, and a recall rate of 93.33% for the Low risk. Misclassification occurred just in a limited number of low-risk instances that were inaccurately classified as medium, suggesting a conservative bias in the evaluation. These results suggest that the model may serve as a dependable tool for ergonomic risk classification, particularly in reliably identifying high risk
PERENCANAAN LOKASI STASIUN PENGISIAN BAHAN BAKAR GAS (SPBG) UNTUK WILAYAH KOTA PADANG Fitri, Meldia; Adelino, Muhammad Ilham; Nurhasanah, Wulan
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (513.663 KB) | DOI: 10.30598/barekengvol15iss3pp543-554

Abstract

Lokasi Stasiun Pengisian Bahan Bakar Gas (SPBG) strategis dengan jumlah optimal menjadi hal yang perlu dipertimbangkan di kota Padang. Kota Padang saat ini masih belum memiliki lokasi SPBG. Tujuan dari penelitian ini adalah untuk merencanakan jumlah dan lokasi kandidat SPBG yang optimal di kota Padang. Metode yang digunakan adalah 0-1 Integer Linear Programming dengan menggunakan dua skenario. Skenario pertama adalah lokasi SPBU saat ini dijadikan sebagai kandidat SPBG. Skenario kedua menambahkan alternatif lokasi SPBG baru. Hasil yang didapatkan adalah jumlah kandidat SPBG optimal sebanyak 11 kandidat. Jumlah tersebut konsisten pada skenario pertama dan kedua. Lokasi kandidat SPBG yang terpilih pada kedua skenario tersebut adalah Simpang Kalumpang, Balai Gadang, Batang Arau, Pitameh, Bandar Buat, dan KKSP Indarung. Lokasi kandidat SPBG yang dipilih pada skenario pertama, yaitu Sawahan, Kubu Marapalam, Pasar Ambacang, Mata Air, dan Bungus, digantikan dengan lokasi di Ranah, Ulak Karang 3, Kandidat 1, Pisang, dan Kandidat 9 pada skenario kedua
Pengukuran Kinerja Rantai Pasok Pada Industri Karet Remah dengan Pendekatan SCOR (Supply Chain Operations Reference) Harma, Beni; Adelino, Muhammad Ilham; Ramadayanti, Miza; Triha, Hadigufri
INVENTORY: Industrial Vocational E-Journal On Agroindustry Vol. 5 No. 1 (2024)
Publisher : Politeknik ATI Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52759/inventory.v5i1.195

Abstract

One of the pivotal aspects of a company lies in its supply chain. The company must effectively and efficiently manage their supply chains to support production quality, achieve organizational goals, and ensure customer satisfaction. This research aims to determine the key performance indicators (KPIs) for the crumb rubber processing industry and provide suggestions for improving its supply chain performance. Supply chain performance measurement was conducted using the Supply Chain Operations Reference (SCOR) model in conjunction with the Analytical Hierarchy Process (AHP) method to determine the weights of the KPIs. The research found that the overall supply chain performance score for the crumb rubber company was 84.92, categorizing it as "Good." However, among the 26 Key Performance Indicators (KPIs) identified, three indicators (i.e. production of defective products, consumer complaints, and returns of defective products) fell into the "Poor" category. Hence, it is crucial for crumb rubber industry stakeholders to address these three criteria to enhance supply chain performance.