p-Index From 2020 - 2025
6.982
P-Index
This Author published in this journals
All Journal Jurnal Teknologi Informasi dan Ilmu Komputer SEMIRATA 2015 Seminar Nasional Informatika (SEMNASIF) CESS (Journal of Computer Engineering, System and Science) InfoTekJar : Jurnal Nasional Informatika dan Teknologi Jaringan Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Informatika JIKO (Jurnal Informatika dan Komputer) JURNAL MEDIA INFORMATIKA BUDIDARMA Jurnal Teknik Informatika UNIKA Santo Thomas MATRIK : Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer Query : Jurnal Sistem Informasi JOURNAL OF SCIENCE AND SOCIAL RESEARCH KOMPUTA : Jurnal Ilmiah Komputer dan Informatika CSRID (Computer Science Research and Its Development Journal) Jurnal Varian Dinasti International Journal of Education Management and Social Science JTIK (Jurnal Teknik Informatika Kaputama) KAKIFIKOM : Kumpulan Artikel Karya Ilmiah Fakultas Ilmu Komputer Jurnal Tekinkom (Teknik Informasi dan Komputer) Jurnal Teknik Informatika C.I.T. Medicom JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) JUKI : Jurnal Komputer dan Informatika MEANS (Media Informasi Analisa dan Sistem) Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal SAINTIKOM (Jurnal Sains Manajemen Informatika dan Komputer) Jurnal Ipteks Terapan : research of applied science and education Jurnal Teknik Informatika Unika Santo Thomas (JTIUST) Jurnal Dinamika Informatika (JDI) Data Sciences Indonesia (DSI) International Journal of Economic, Technology and Social Sciences (Injects) Proceeding of International Conference on Information Science and Technology Innovation (ICoSTEC) Proceeding Of International Conference On Education, Society And Humanity "Journal of Data Science
Claim Missing Document
Check
Articles

Data Science bidang Pemasaran : Analisis Prilaku Pelanggan Mawaddah Harahap; Yusniar Lubis; Zakarias Situmorang
Data Sciences Indonesia (DSI) Vol. 1 No. 1 (2021): Article Research Volume 1 Issue 1, June 2021
Publisher : ITScience (Information Technology and Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (647.22 KB) | DOI: 10.47709/dsi.v1i1.1194

Abstract

Dalam kegiatan pemasaran digital, data Science (DS) memiliki peran penting dalam memahami kinerja industri pemasaran sebelum menerapkan teknik pemasaran digital pada pemasaran produk. Hal ini dikarenakan setiap pelanggan merespons secara berbeda setiap penawaran. Perilaku pelanggan juga berubah berdasarkan waktu karena mereka mungkin memiliki kebutuhan yang berbeda pada situasi yang berbeda. Pada makalah ini fokus menyajikan analisis bisnis dengan penerapan DS untuk mengeksplorasi pola perilaku dan juga memprediksi bagaimana pelanggan akan merespons penawaran yang berbeda. Penerapan analisis data eksplorasi juga diterapkan untuk menjawab beberapa pertanyaan bisnis, dari hasil pengamatan menghasilkan lima kelompok pelanggan yang disajikan dalam bentuk visualisasi dan model Random Forest Classifier memiliki skor akurasi prediksi terbaik sebesar 91%, kemudian K neighbors Classifier dan Logistic Regression.
Analisis Pemasaran Bisnis dengan Data Science : Segmentasi Kepribadian Pelanggan berdasarkan Algoritma K-Means Clustering Mawaddah Harahap; Yusniar Lubis; Zakarias Situmorang
Data Sciences Indonesia (DSI) Vol. 1 No. 2 (2021): Article Research Volume 1 Number 2, Desember 2021
Publisher : ITScience (Information Technology and Science)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (979.801 KB) | DOI: 10.47709/dsi.v1i2.1348

Abstract

Dalam makalah ini kami menyajikan analisis kepribadian pelanggan dalam membantu bisnis untuk memodifikasi produknya berdasarkan target pelanggan dari berbagai jenis segmen pelanggan sehingga menemukan pelanggan yang potensial, membuat pemasaran agar lebih efektif, melihat tren dalam perilaku pembelian pelanggan dan membuat penawaran produk yang relevan kepada pelanggan. Kerangka kerja Data Science (ilmu data) dengan metodologi CRIS-DM diterapkan untuk memberikan pemahaman bisnis, pemahaman data, analisis data dan pemodelan. Pada tahapan pemodelan diusulkan Principal component analysis (PCA) untuk pengurangan dimensial fitur, kemudian algoritma K-Means untuk segmentasi pelanggan dengan menggunakan metode ellow dan silhouette yang menghasilkan nilai k=4 yang paling optimal. Terakhir, hasil 4 cluster di analisis berdasarkan proposi, belanja, pendidikan dan tingkat keberhasilan kampanye yang disajikan secara visualisasi.
KOMPARASI RANDOM FOREST DAN LOGISTIC REGRESSION DALAM KLASIFIKASI PENDERITA COVID-19 BERDASARKAN GEJALANYA Ichsan Firmansyah; Jaka Tirta Samudra; Doughlas Pardede; Zakarias Situmorang
JOURNAL OF SCIENCE AND SOCIAL RESEARCH Vol 5, No 3 (2022): October 2022
Publisher : Smart Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54314/jssr.v5i3.994

Abstract

Abstract: In data mining, we can use symptoms suffered by patients for a reference in classifying positive and negative Covid-19 patients using data mining. Random Forest and logistic regression are two data mining algorithms with high accuracy, precision, and sensitivity in data classification. This study compares the random forest and the logistic regression algorithm - where we use the lasso and ridge regulations - on classifying positive and negative Covid-19 patients based on their symptoms. From 5434 data used in the data set, the evaluation results show that the random forest algorithm is the best in terms of accuracy, precision, and sensitivity compared to other algorithms, while the logistic regression algorithm with ridge regulation is the worst. The random forest algorithm is the most reliable in classifying patients with positive Covid-19, while the logistic regression algorithm with ridge regulation is the least reliable. Also, the random forest algorithm is the most reliable in classifying patients with negative Covid-19, while the logistic regression algorithm with lasso regulation is the least reliable.Keywords: classification;covid-19;data mining;logistic regression;random forest.Abstrak: Dalam data mining, kita dapat menggunakan gejala yang diderita pasien sebagai acuan dalam mengklasifikasikan pasien positif dan negatif Covid-19 menggunakan data mining. Random forest dan logistic regression adalah dua algoritma data mining yang memiliki akurasi (accuracy), presisi (precision), dan sensitivitas (recall) tinggi dalam klasifikasi data. Penelitian ini membandingkan algoritma random forest dan logistic regression - di mana kami menggunakan regulasi lasso dan ridge - dalam mengklasifikasikan pasien positif dan negatif Covid-19 berdasarkan gejalanya. Dari 5434 data yang digunakan dalam data set, hasil evaluasi menunjukkan bahwa algoritma random forest adalah yang terbaik dalam hal akurasi, presisi, dan sensitivitas dibandingkan dengan algoritma lainnya, sedangkan algoritma logistic regression dengan regulasi ridge adalah yang terburuk. Algoritma random forest paling andal dalam mengklasifikasikan pasien positif Covid-19, sedangkan algoritma logistic regression dengan regulasi ridge merupakan algoritma yang paling tidak tidak dapat diandalkan. Selain itu, algoritma random forest paling andal dalam mengklasifikasikan pasien dengan Covid-19 negatif, sedangkan algoritma logistic regresssion dengan regulasi lasso merupakan yang paling tidak dapat diandalkan.Kata kunci: covid-19;data mining;klasifikasi;logistic regression;random forest.
Analisis Faktor Kesulitan Mahasiswa Dalam Menyelesaikan Nilai Gagal Menggunakan Metode Algoritma C4.5 ELa Roza Batubara; Zakarias Situmorang
Jurnal Dinamika Informatika Vol 11 No 2 (2022): Jurnal Dinamika Informatika Vol.11 No.2
Publisher : Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The purpose of this study was to determine the most dominant factor in students' difficulties in completing failed grades. In this study, researchers used Data Mining techniques using the C4.5 algorithm. Sources of research data used were obtained from interviews and giving questionnaires to students at random in the AMIK Tunas Bangsa Pematangsiantar environment. The research variables used are the costs incurred (C1), time taken (C2), motivation to try to work (C3), student awareness (C4), and information obtained (C5). In this study, the alternative used as a sample was AMIK Tunas Bangsa students, sixth semester. The results of the classification using the C4.5 algorithm and testing with rapidminer software found that the most dominant factor in the difficulty of students completing the failed score was the cost incurred (C1) with a gain value of 0.15577244.
Improvement Ranking Accuracy of Weighted Aggregated Sum Product Assessment With Lambda Variable Muhadi M. Ilyas Gultom; Erna Budhiarti Nababan; Zakarias Situmorang
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 7, No 1 (2023): Januari 2023
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v7i1.5280

Abstract

Conventional methods are still used in selecting  the best students in the various institutions depending on the subjectivity of each member of the assigned committee. In order to make an objective decision, it is necessary to have a method that can consider the criteria used to select the candidates to be elected. The decision-making method used in this study is Weighted Aggregated Sum Product Assessment(WASPAS). This study aims to analyze the increase in accuracy of the WASPAS method that occurs in the implementation of the lambda variable in the process of combining the Weight Product Method(WPM) and Weight Sum Method(WSM). This method is use because it is suitable for the case studied where the application of this method focuses on weighting criteria with a dynamic number of alternatives and low computational complexity providing good performance in handling large amounts of data.The application of this method uses data from students from Engineering Faculty of Universitas Islam Sumatera Utara which is tested on 10 students with criteria adapted from student data attributes that can be used as parameters for decision making. The results of this study show an increase for each alternative with an average value of 23.6% for each alternative. From this study it can be concluded that accuracy is highly dependent on variations in lambda values which are affected by the determinant operator in the equation used. Therefore it is possible to find an absolute equation to give optimal effect on a single value without variation by considering the bias of the effect of the WASPAS method on the lambda variable in future research.TRANSLATE with x EnglishArabicHebrewPolishBulgarianHindiPortugueseCatalanHmong DawRomanianChinese SimplifiedHungarianRussianChinese TraditionalIndonesianSlovakCzechItalianSlovenianDanishJapaneseSpanishDutchKlingonSwedishEnglishKoreanThaiEstonianLatvianTurkishFinnishLithuanianUkrainianFrenchMalayUrduGermanMalteseVietnameseGreekNorwegianWelshHaitian CreolePersian //  TRANSLATE with COPY THE URL BELOW Back EMBED THE SNIPPET BELOW IN YOUR SITE Enable collaborative features and customize widget: Bing Webmaster PortalBack//
ANALISIS VARIATION K-FOLD CROSS VALIDATION ON CLASSIFICATION DATA METHOD K-NEAREST NEIGHBOR Ridha Maya Faza Lubis; Zakarias Situmorang; Rika Rosnelly
Jurnal Ipteks Terapan (Research Of Applied Science And Education ) Vol. 14 No. 3 (2020): Re Publish Issue
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah X

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.392 KB) | DOI: 10.22216/jit.v14i3.98

Abstract

To produce a data classification that has data accuracy or similarity in proximity of a measurement result to the actual numbers or data, testing can be done based on accuracy with test data parameters and training data determined by Cross Validation. Therefore data accuracy is very influential on the final result of data classification because when data accuracy is inaccurate it will affect the percentage of test data grouping and training data. Whereas in the K-Nearest Neighbor method there is no division of training data and test data. For this reason, researchers analyzed the determination of training data and test data using the Cross validation algorithm and K-Nearest Neighbor in data classification. The results of the study are based on the results of the evaluation of the Cross Validation algorithm on the effect of the number of K in the K-nearest Neighbor classification of data. The author tests using variations in the value of K K-Nearest Neighbor 3,4,5,6,7,8,9. While the training and test data distribution using Cross validation uses variations in the number of K-Fold 1,2,3,4,5,6,7,8,9,10
COMPARATIVE OF ID3 AND NAIVE BAYES IN PREDICTID INDICATORS OF HOUSE WORTHINESS Ade Clinton Sitepu; Wanayumini -; Zakarias Situmorang
Jurnal Ipteks Terapan Vol. 14 No. 3 (2020): Re Publish Issue
Publisher : Lembaga Layanan Pendidikan Tinggi Wilayah X

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (591.22 KB) | DOI: 10.22216/jit.v14i3.99

Abstract

Decision making is method of solving problems using certain way / techniques so that can beaccepted. After making some calculations and considerations through several stages, the decisionhave taken that decision maker goes through. This stage will be selected until the best decision hasmade. Decision-making aims to solve problems that solve problems so that decisions with finalgoals can be implemented properly and effectively. This study uses a simulation of decision makingfrom seven attributes to the proportion of the feasibility of a house based on data from CentralStatistics Agency (BPS). There are several techniques for presenting decision making including: ID3(decision tree) algorithm concept and Naïve Bayes algorithm. Both classification are learningsuperviseddata grouping. ID3 algorithm depicts the relationship in the form of a tree diagramwhereas Naïve Bayes makes use of probability calculations and statistics. As a result, in datatraining, decision trees are able to model decision making more accurately. The prediction resultsusing the decision tree model = 90.90%, while Naïve Bayes = 72.73%. Meanwhile, the speed of theNaive Bayes algorithm is better
Comparative Analysis of SVM and Perceptron Algorithms in Classification of Work Programs Jaka Tirta Samudra; Rika Rosnelly; Zakarias Situmorang
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 22 No 2 (2023)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v22i2.2479

Abstract

Government agencies are required to mobilize every aspect of publication which is carried out every year which must be accounted for and also carried out for each device that receives it such as assisted villages by utilizing available apbd funds in maximizing work programs designed so that they can be implemented optimally and effectively. by getting the best from all aspects of the work program implementation, of course there are important points in designing an annual work program without exception. data mining itself can help the department of population, family planning, women's empowerment and child protection in analyzing each work program design from before it is implemented onwards to look at various aspects of past data whose grouping is in the form of classification. The purpose of this study is to build a classification model with the addition of a sigmoid activation function that uses svm and perceptron to obtain a comparison value for the accuracy of the algorithm used to obtain the best working program design. The classification results are used to get the best value for classifying the best P2KBP3A work program dataset where it can be seen that the average accuracy value is 87.5%, the f1 value is 82.2%, the precision value is 80.2%, and the recall value is 87.5% so that the final result of the research results obtained a good accuracy value.
Comparative Analysis of Support Vector Machine and Perceptron In The Classification of Subsidized Fuel Receipts Jaka Tirta Samudra; Rika Rosnelly; Zakarias Situmorang
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4731

Abstract

Currently, fuel oil is one of the important factors for the community and even a country on this earth to utilize this natural gas fuel for daily use as the main use and also by increasing the community's need for fuel oil. But there are several factors that cause this fuel problem, there is a factor of time and usage time, which is certain that one day it will expire and its capacity in a country, even if the country runs out of fuel, will make requests to other countries and also obstacles to supplying this fuel oil to the public. which is the main fuel from the Pertamina government agency which has begun to limit purchases for this fuel oil to certain circles by marking the types of subsidies or not subsidies that must be controlled by the government in limiting purchases for the public. In dealing with solving problems from the perspective of ownership or even utilization, there are limits to owning fuel, and not everyone has to have a lot or even too much. In solving the problem of dividing fuel revenue, which is good for filling revenue, it can be solved by using machine learning, namely data mining itself can help in completing subsidized fuel receipts without being excessive for the community so that they can be controlled and managed for their purchases. In building a fuel oil reception design, it can be grouped into a classification model that uses SVM and perceptron which uses the activation function of the sigmoid to get the final result of accuracy where getting the average value of 5-fold, 10-fold, 20-fold is accuracy. is 90.0%, the F1 value is 85.6%, the precision value is 87.6%, and the recall value is 90.0%.
STUDY OF C45 ALGORITHM IN PREDICTING NEW EMPLOYEE ACCEPTION Khoirunsyah Dalimunthe; Zakarias Situmorang
International Journal of Economic, Technology and Social Sciences (Injects) Vol. 2 No. 2 (2021): October 2021
Publisher : CERED Indonesia Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (400.719 KB) | DOI: 10.53695/injects.v2i2.555

Abstract

Good employee performance is one of the criteria in the company where one has good behavior and can complete the work given to him. But there are some difficulties in knowing the quality of people who have good potential as employees in a company. Therefore, a method or method is needed to identify prospective employees of a company. The C4.5 algorithm can be used to predict and classify prospective employees who have the potential to enter the company by making a decision tree based on existing data and predicting new prospective employees who want to enter the company.
Co-Authors Adam Sagara Ade Clinton Sitepu Ade Clinton Sitepu Adelina, Mimi Chintya Aditia Rangga Agus Fahmi Limas Putra Alkhairi, Putrama Asrizal Asrizal Asyahri Hadi Nasyuha B. Herawan Hayadi Budi K. Hutasuhut Daim Azhari Parinduri Desi Irfan Doughlas Pardede Efendi, Syahril Ela Roza Batubara Erna Budhiarti Nababan Fazli Nugraha Tambunan Ginting, Emnita Boru Handayani, Meli Hartono Hartono Herman Mawengkang Husein, Alice Erni Ichsan Firmansyah Irwan Daniel Irwan Daniel Ita Juwita Saragih Jaka Tirta Samudra Jaka Tirta Samudra Jaka Tirta Samudra Jaka Tirta Samudra Jazi Eko Istiyanto Jinan, Abwabul Jinan, Abwabul Junaidi Junaidi Karina Andriyani Kelvin Leonardi Kohsasih Khairul Fadhli Margolang Khoirunsyah Dalimunthe Kusuma, Jaka Lestari, Valencya Lewis, Andreas Lubis, Cindy Paramitha Lusi Herlina Siagian M Anggi Rivai Nst Manungkalit, Jupri Maria Claudia Purba Masri Wahyuni Mawaddah Harahap Mawaddah Harahap, Mawaddah Melda Pita Uli Sitompul Muhadi M. Ilyas Gultom Muhammad Mizan Siregar Muhammad Zarlis Muhammad Zarlis, Muhammad Nababan, Junerdi Novendra Adisaputra Sinaga Opim Salim Sitompul P.P.P.A.N.W. Fikrul Ilmi R.H. Zer Pradipta, Muhammad Iqbal Pratiwi, Mariska Putri Puji Sari Ramadhan Purba, Andry Hery Putrama Alkhairi Raden Aris Sugianto Rahmad, Sofyan Retantyo Wardoyo Riandini, Maisarah Ridha Maya Faza Lubis Ridha Maya Faza Lubis Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly Rika Rosnelly, Rika Rimbun Siringoringo, Rimbun Romanus Damanik Roslina, Roslina Rubianto Rubianto Sartika Mandasari Sembiring, Rahmat Widya Sri Hartati Sugeng Riyadi Tarigan, Dede Ardian Tulus Tulus Wanayumini Yoppi, Edunal Yuni Franciska Yusfrizal Yusfrizal Yusniar Lubis Yusniar Lubis Yusniar Lubis