Claim Missing Document
Check
Articles

Penggunaan metode L-moment dalam pemodelan hujan harian maksimum Kota Makassar Wahidah Sanusi; Muhammad Abdy; Syafruddin Side
Seminar Nasional LP2M UNM Prosiding Edisi 3
Publisher : Seminar Nasional LP2M UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (602.994 KB)

Abstract

Evaluation of maximum rainfall events is important in the management and planning of water sources which, among others, aim to design a drainage system and abundant water storage. This evaluation can be done through estimation of design rainfall. This rain design is very dependent on the type of distribution of opportunities for rain. Therefore, the purpose of this study was to identify the maximum distribution of rainfall opportunities in the city of Makassar using the L-Moment method. This method provides information about the size of the location, size of the spread, skewness and kurtosis of the distribution of probability data samples. The data used in this study is the annual maximum daily rainfall data of the Paotere Maritime Meteorology rain station in Makassar in the period 1985-2017. This station is selected based on the completeness and length of the data. Based on the good of fit distribution model, it was found that rainfall at the Paotere Maritime Meteorological Station followed the distribution of Generalized Logistics. The results of this study can then be used to estimate design rainfall
Penggunaan Metode Double Exponential Smoothing dalam Meramalkan Indeks Harga Konsumen (IHK) di Kota Makassar Muhammad Abdy; Irwan Thaha; Faturachman Lukman
Journal of Mathematics: Theory and Applications Vol 5 No 2 (2023): Volume 5, Nomor 2, 2023
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/jomta.v5i2.2874

Abstract

Karakteristik Konikoida Sahlan Sidjara; Muhammad Abdy
d\'Cartesian: Jurnal Matematika dan Aplikasi Vol. 5 No. 2 (2016): September 2016
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35799/dc.5.2.2016.14136

Abstract

Pada geometri bidang khususnya pada kasus irisan kerucut terdapat beberapa bentuk yang dapat diperoleh dari irisan kerucut diantaranya: Lingkaran, Elips, Hiperbola dan Parabola. Selanjutnya, bentuk-bentuk tersebut pada geometri ruang disebut sebagai konikoida yang terdiri dari: bola, elipsoida, kerucut eliptik,hiperboloida daun satu, hiperboloida daun dua, paraboloida eliptik, paraboloida hiperboloida,silinder hiperbolik dan silinder parabolik. Tulisan ini membahas mengenai karakteristik dari konikoida berdasakan kerucut arah dan pusat konikoida.Kata Kunci: konikoida, kerucut arah dan pusat konikoida.
Penerapan Metode Triple Exponential Smoothing Holt Winters dalam Meramalkan Jumlah Keberangkatan Penumpang Kapal di Pelabuhan Soekarno-Hatta Makassar Abdy, Muhammad; Irwan, Irwan; Mayangsari, Mayangsari
SAINTIFIK Vol 10 No 2 (2024): Saintifik: Jurnal Matematika, Sains, dan Pembelajarannya
Publisher : Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/saintifik.v10i2.533

Abstract

Triple exponential smoothing Holt-Winters adalah suatu metode peramalan untuk data yang memiliki pola musiman dan memiliki dua cara perhitungan yaitu secara additive dan multiplicative. Penelitian ini bertujuan untuk memberikan informasi mengenai jumlah calon penumpang, agar pihak Pelindo (Pelabuhan Indonesia) dapat mempersiapkan atau melakukan penambahan jumlah kapal jika terjadinya suatu lonjakan jumlah penumpang. Metode yang tepat untuk meramalkan jumlah keberangkatan penumpang kapal di Pelabuhan Soekarno-Hatta Makassar untuk 12 bulan ke depan (Januari 2023 - Desember 2023) menggunakan metode triple exponential smoothing Holt-Winters. Pemilihan model terbaik berdasarkan hasil perbandingan nilai akurasi prakiraan MSE, RMSE dan MAD yang terkecil. Hasil peramalan pada penelitian ini menunjukkan model terbaik yang tepat untuk digunakan adalah model additive dengan nilai parameter , , dan dengan tingkat nilai akurasi prakiraan MSE=161718521, RMSE=12583,6952 dan MAD=8584,4011 yang lebih rendah bila dibandingkan dengan model Holt-Winters multiplicative.
Suatu Kajian Tentang Grup Fuzzy Muhammad Abdy; Sukarna; Rahmah Abubakar
Journal of Mathematics, Computations and Statistics Vol. 1 No. 01 (2018): Volume 01 Nomor 01 (April 2018)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research aims to review the basic concept of fuzzy group from classic group that have been introduced by Azriel Rosenfeld, and in addition,to find the connection between the properties of classic group and properties of fuzzy group. Show that the Theorem 7 is can't be applied in fuzzy group.
Suatu Kajian Tentang Lapangan Kabur dan Ruang Vektor Kabur Muhammad Abdy; Syafruddin Side; Muhammad Edy Rizal
Journal of Mathematics, Computations and Statistics Vol. 1 No. 01 (2018): Volume 01 Nomor 01 (April 2018)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research redefine fuzzy fields and fuzzy linear spaces. Furthermore, we show some theorem that applies to both concepts of fields and linear spaces (classic and fuzzy concept).
Matriks Kabur dan Karakteristiknya Muhammad Abdy; Maya Sari Wahyuni; Muh. Hadi Purnomo
Journal of Mathematics, Computations and Statistics Vol. 2 No. 01 (2019): Volume 02 Nomor 01 (April 2019)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research examines the definitions, operations, and theorems of fuzzy matrices and their characteristics. The literature used as a reference is an article written by Pal (2016), Sidky & Emam (1992), and Suroto & Wardayani (2015). The results can be given improvements to the operations used in the fuzzy matrix and the set of square fuzzy matrix theorems can be extended to fuzzy matrix set theorems. In addition, it was concluded that the set of square fazzy matrix fulfilled the algebraic properties for semigroup and semiring. But it does not fulfill algebraic properties for groups and rings.
Metode Automatic clustering-fuzzy logical relationships pada Peramalan Jumlah Penduduk di Kota Makassar Muhammad Abdy; Rahmat Syam; Elfira Haryanensi A
Journal of Mathematics, Computations and Statistics Vol. 1 No. 02 (2018): Volume 01 Nomor 02 (Oktober 2018)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research is the application of the forecasting method of fuzzy time series which is the method of automatic clustering fuzzy-logical relationships in forecasting the population of Makassar City using secondary data from BPS Makassar city which aims to predicting the population in year 2017-2021. The discussion starting from the determination of the length of the interval, determining the value of the middle length interval, making relations of fuzzy logic, fuzzification, defuzzification, and calculating the error value of the forecasting result by using the method of Mean Absolute Percentage Error. The result of this research shows that the predictions of the population of Makassar City from 2016 to 2017 increased, from 2017 to 2019 decreased, and in 2019-2021 increased with the very good accuracy.
Penerapan Metode Dekomposisi Adomian Laplace Dalam Menentukan Solusi Persamaan Panas Muhammad Abdy; Syafruddin Side; Reza Arisandi
Journal of Mathematics, Computations and Statistics Vol. 1 No. 02 (2018): Volume 01 Nomor 02 (Oktober 2018)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study discusses the application of Adomian Laplace Decomposition Method (ALDM) in determining the solution of heat equation. Adomian Laplace Decomposition Method is a semi analytical method to solve nonlinear differential equations that combine Laplace transform and Adomian decomposition method. Based on the calculation result, Adomian Laplace decomposition method can approach the settlement of ordinary nonlinear differential equations.
Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Sulawesi Selatan Menggunakan Model ARFIMA Sukarna; Abdy, Muhammad; Aswi; Kaito, Nurlaila
Journal of Mathematics, Computations and Statistics Vol. 5 No. 2 (2022): Volume 05 Nomor 02 (Oktober 2022)
Publisher : Jurusan Matematika FMIPA UNM

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tourism is a potential and strategic asset to encourage the development of a region, especially for areas that have potential tourist objects. Exchange rates, inflation, and geography influence foreign tourist visits to an area. What may be unexpected is the increase in the number of tourists, which makes tourist workers have difficulties in providing the best services, and vice versa if there is a sudden drop, it will increase the number of unemployed. Therefore, we need a scientific study of forecasting that can provide information on the number of tourists. The ARFIMA model is an ARIMA whose differencing value is a fraction. The main goal of this research is to discover the best ARFIMA model to predict the number of foreign tourist arrivals in South Sulawesi. From the data of foreign tourists in South Sulawesi from 2015 to 2020, the result of this research is the AIC value of 710.44 for ARFIMA([1,8],d,0) with. The average difference between the actual and forecasted data in the out sample data for the two models is 38.6667 points. Therefore, the two models can still be classified as the best for forecasting foreign tourists from South Sulawesi. It depends on who applied this models into this cases.