Claim Missing Document
Check
Articles

Bahasa Inggris Adiarifia, Nissa; Budiastra, I Wayan; Mardjan, Sutrisno Suro
Jurnal Keteknikan Pertanian Vol. 12 No. 1 (2024): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19028/jtep.012.1.128-139

Abstract

Kadar minyak dan air adalah kriteria kualitas penting dari crude palm oil (CPO) yang dihasilkan dari pengolahan buah kelapa sawit. Biasanya, kandungan tersebut ditentukan menggunakan metode kimia di laboratorium. Metode ini memakan waktu, prosedur panjang, dan bersifat merusak. Beberapa upaya telah dilakukan untuk menentukan kadar minyak dan air buah kelapa sawit secara non-destruktif menggunakan beberapa metode, termasuk Near-Infrared Spectroscopy (NIRS), tetapi hasilnya belum memuaskan. Penelitian ini bertujuan untuk mengevaluasi Artificial Neural Network (ANN) dan metode NIRS untuk memprediksi kadar minyak dan air buah kelapa sawit secara non-destruktif. Sampel yang digunakan adalah buah kelapa sawit dengan sepuluh tingkat kematangan yang diambil dari perkebunan di Bogor. Reflektansi sampel diukur dengan spektrometer NIR-Flex 500 pada panjang gelombang 1000-2500 nm. Setelah itu, kadar minyak dan air ditentukan menggunakan metode kimia. Beberapa pre-treatment spektrum NIR, yaitu normalisasi, turunan pertama savitzky-golay, kombinasi keduanya, dan standard normal variate, diterapkan. Analisis multivariat seperti PLS dilakukan, dan hasil dari factor component (FC) dijadikan input untuk model ANN. Hasilnya menunjukkan bahwa metode terbaik untuk memprediksi kadar minyak adalah kombinasi turunan pertama savitzky-golay dan pre-treatment normalisasi menggunakan PLS-ANN dengan 20 FC (R2=0.99; SEC=0,58%, RPD = 29.89; CV = 2.47%). Untuk kadar air, prediksi terbaik adalah pre-treatment variasi standard normal variate menggunakan PLS-ANN dengan 20 FC (R2=0.99; SEC=1,07%, RPD=20.68; CV=1,73%). Hasil ini menunjukkan bahwa ANN dan NIRS yang dikembangkan dapat memprediksi kadar minyak dan air buah kelapa sawit secara non-destruktif.
Macro-Nutrient Prediction of Paddy Field Soil Using Artificial Neural Network and NIR Spectroscopy Ahmad, Usman; Budiastra, I Wayan; Subrata, I Dewa Made; Firdaus, Jonni
Jurnal Keteknikan Pertanian Vol. 12 No. 2 (2024): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19028/jtep.012.2.242-258

Abstract

Understanding soil fertility, influenced by macronutrients like nitrogen, phosphorus, and potassium, is essential for adaptive agriculture implementation based on various soil conditions. Near-infrared spectroscopy technology provides non-destructive, rapid soil property measurements without chemicals, applicable both in-field and in-laboratory. However, the wide NIR spectrum range and neural network complexities can hinder Artificial Neural Network (ANN) training and inference, leading to time and resource inefficiency, especially without sophisticated computing devices. This study examines data reduction methods to enhance ANN performance in predicting soil macronutrients using NIR spectra. Multiple Linear Regression (MLR) and Principal Component Analysis (PCA) were applied to select wavelengths from the 1000–2500 nm for ANN input, comparing their performance. About 237 NIR reflectance data from paddy soil were transformed into absorbance data. MLR used forward selection to identify wavelengths with correlations higher than 0.9, while PCA selected wavelengths corresponding to the loading factor peaks for each principal component. These selected wavelengths served as inputs for the ANN model. The ANN’s performance was assessed using correlation and determination coefficients, RMSE, RPD, and model consistency. For nitrogen, the PCA+ANN model with reflectance spectra performed better (RPD 2.4-4.8) than the MLR+ANN model (RPD 2.2-2.6) using fewer wavelengths (5-9 for PCA+ANN vs. 9-12 for MLR+ANN). For phosphorus estimation, the PCA+ANN model also excelled (RPD 2.3-7.0 vs. 2.3-2.4) with fewer wavelengths (4-7 vs. 7). For potassium estimation, the PCA+ANN model showed superior performance (RPD 4.3-9.5 vs. 4.2-4.4), using the same number of wavelengths (4-8 vs. 4-6).
Improvement of cured vanilla pod qualities (Vanilla Planifolia A.) with a combination of advanced sweating and drying methods”. Budiastra, I Wayan; Nelwan, Leopold Oscar; Distriani, Putri Ayu Ira
Jurnal Keteknikan Pertanian Vol. 13 No. 1 (2025): Jurnal Keteknikan Pertanian
Publisher : PERTETA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19028/jtep.013.1.147-161

Abstract

Buah vanili kering merupakan bahan pangan yang digunakan sebagai pemberi rasa dan aroma pada berbagai makanan seperti es krim, kue kering, dan sirup. Buah vanili kering dihasilkan petani melalui proses pasca panen yang panjang meliputi pemanenan, pelayuan, pemeraman dan pengeringan dengan mutu yang bervariasi. Penelitian ini bertujuan untuk mempelajari kombinasi metode pemeraman lanjut dan pengeringan untuk meningkatkan mutu buah vanili kering dan mempersingkat waktu pengeringan. Sebanyak 33 kg buah vanili dipanen, dilakukan proses pelayuan dengan cara direndam dalam air panas bersuhu 60-65°C selama 2 menit, dilanjutkan dengan proses pemeraman selama 48 jam. Setelah itu, buah vanili diberi perlakuan tiga waktu pemeraman lanjutan (4,6, dan 8 hari) dan dua metode pengeringan (pengering efek rumah kaca dan pengering tipe rak). Proses ini berlanjut hingga kadar air mencapai 30-35%. Pengukuran fisika-kimia dan uji organoleptik dilakukan untuk memantau perubahan kualitas buah vanili selama perlakuan. Hasil penelitian menunjukkan bahwa penambahan pemeraman lanjutan selama 4 hari, 6 hari, dan 8 hari pada proses pengeringan berpengaruh nyata terhadap kadar air, warna, dan kadar vanilin buah vanili kering. Buah vanila yang diberi perlakuan pemeraman lanjutan selama 8 hari dengan pengering tipe rak menghasilkan kualitas buah vanila kering terbaik dengan waktu pengeringan yang lebih singkat yaitu 8 hari, dibandingkan dengan pengeringan tradisional 20 hari dan pengering efek rumah kaca 10 hari untuk mencapai kadar air 35%.
Design and Performance Test of Brown Rice Germinator with Automatic Environmental Control System for Production of Germinated Brown Rice Permatasari, Ressy Angli; Sutrisno, Sutrisno; Budiastra, I Wayan; Mawardi, Haris; Firmansyah, Angga; Hermawan, Arfandi; Ningsih, Elisa Eka Ari Purwanti
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 1 (2025): February 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtep-l.v14i1.171-181

Abstract

A germinator equipped with automatic environmental control system has been developed to produce the high quality of germinated brown rice. The germinator consists of germination chamber, temperature and relative humidity sensors, relays, actuator, and display panel so the germination process can be set up and controlled. The performance test were carried out covering the technical reliability of the system and the capability of germinator to produce germinated brown rice. The test results show that the brown rice germinator with an automatic environmental control system worked very well. The use of water misters and PTC air heaters is able to maintain humidity and air temperature inside germinator. The brown rice germinator can produce germinated brown rice with germination rate more than 80%. The result shows that the brown rice germinator can be used to produce germinated brown rice both for private and commercial use. Keywords: Brown rice, Germination, Humidity, Temperature.
Influence of Temperature and Sweating Duration on The Quality of Vanilla (Vanilla planifolia Andrews) Kurniasari, Farida; Budiastra, I Wayan; Wulandani, Dyah
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 2 (2025): April 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtep-l.v14i2.458-466

Abstract

Indonesia has significant potential for vanilla production. However, in terms of quality, Indonesian dried vanilla still has a low standard, one of the factors being the suboptimal post-harvest technology, particularly in the sweating process. This research aims to determine the optimal temperature and sweating duration to achieve the best vanilla quality in accordance with the Indonesian National Standard (SNI). After the harvesting process, the vanilla pods were treated by soaking them in warm water at a temperature of 65°C for 3 minutes. After the vanilla pods were wilted, they were wrapped using a combination of a towel cloth-black cloth-burlap. They were then sweated in an incubator at 40°C with 70% RH and 45°C with 70% RH for 2, 4, and 6 days. The observed vanilla quality parameters include weight loss, color, hedonic tests (aroma and color), vanillin content based on the methods of SNI 01-0010-2002 and ash content based on the methods of AOAC. The result shows that the optimal temperature and duration for sweating in an incubator are 40°C and 4 days. Keywords: Postharvest, Quality, Sweating, Vanilla, Vanillin.
Predicting Oil Content of Palm Fruit Based on its Electrical Properties Mellyana, Verra; Budiastra, I Wayan; Irmansyah, Irmansyah; Purwanto, Yohanes Aris
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 3 (2025): June 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtep-l.v14i3.933-946

Abstract

The oil content of oil palm fruit is a crucial parameter that must be determined before harvest, as it directly impacts crude palm oil (CPO) quality and processing efficiency. The conventional chemical method for oil content determination is costly and time consuming. This study aims to develop a non-destructive, accurate, and rapid method for predicting oil content in oil palm fruit based on its electrical properties. Measurements of electrical properties were taken across frequencies of 50 Hz to 5 MHz. Oil content of samples were determined by chemical method. Some pre-treatments of electrical properties were carried out and the pre-treated electrical properties were calibrated with reference oil content using simple linear regression and partial least squares regression. Linear regression model showed moderate accuracy (r = 0.61–0.81), with RMSE values between 9.54% and 12.99%. PLS regression models using admittance (r = 0.99, R² = 0.98, SEP 2.20%, RPD 7.99), resistance (r = 0.98, R² = 0.97, SEP 2.62%, RPD 5.56), and impedance (r = 0.98, R² = 0.95, SEP 3.16%, RPD 4.68) produced high prediction accuracy. The results confirm that electrical properties can be used to predict oil content in oil palm fruit rapidly and non destructively. Keywords: Electrical properties, Linear regression, Oil content, PLS.
Nondestructive Prediction of Oil Palm Fruit Quality During Processing Delays Using Electrical Impedance Spectroscopy Akbar, Arief Al; Budiastra, I Wayan; Irmansyah, Irmansyah
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 6 (2025): December 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtepl.v14i6.2171-2178

Abstract

Nondestructive prediction of palm fruit quality is needed to monitor changes in palm fruit quality during processing delays. This study aims to develop a method for predicting the chemical quality of palm fruit during processing delays using the Electrical Impedance Spectroscopy (EIS). The electrical impedance of palm fruit were measured at frequencies of 50 Hz to 1 MHz and followed by the determination of free fatty acid (FFA) and moisture content using chemical methods. The best initial treatment for impedance spectrum data in this study was Standard Normal Variate (SNV) and Baseline. The results of this study indicate that the PLS method outperforms PCR in predicting FFA and moisture content. The best prediction for free fatty acid content was using the SNV pre-treatment and component factor 7 with a value of r = 0.87; SEC = 2.75%; SEP = 2.82%; CV = 23.81%; RPD = 1.94 and consistency of 97.75%. The best prediction for moisture content was obtained using the Baseline initial treatment and component factor 15 with a value of r = 0.97; SEC = 3.65%; SEP = 3.82%; CV = 28.24%; RPD = 1.91 and consistency of 83.24%. The developed electrical impedance and PLS methods can be used to predict free fatty acid content and moisture content of oil palm fruit during processing delays.
Improvement of the Conditioning Process to Enhance the Quality of Vanilla (Vanilla planifolia) Syahrullah, Andi Ulfa Hardianty; Budiastra, I Wayan; Mardjan, Sutrisno
Jurnal Teknik Pertanian Lampung (Journal of Agricultural Engineering) Vol. 14 No. 6 (2025): December 2025
Publisher : The University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jtepl.v14i6.2131-2144

Abstract

The quality of national vanilla still does not fully meet national and international standards, one reason is the suboptimal conditioning process, namely, the final storage stage to stabilize quality. This study aims to examine the effect of packaging type, combined with temperature and conditioning duration, on vanilla's physical, chemical, sensory, and microbiological quality, and determine the best treatment combination in producing vanilla quality that meets SNI. Factorial Completely Randomized Design (CRD) was used in this experiment with three factors namely different material packaging (wax paper and HDPE plastic), various temperatures storage (25 °C, 30 °C, 35 °C), and conditioning durations (1, 1.5, and 2 months). Results showed that temperature, type of packaging, and conditioning duration significantly affect most of the physical, chemical, and microbiological quality parameters of vanilla, except for ash content and organoleptic aroma, which are not significantly different. The best treatment combination was obtained using HDPE packaging with a temperature of 35 °C for 1.5 months of conditioning, producing quality according to SNI 01-0010-2002 with high vanillin content and stable color. However, the total microbial count (TPC) in this treatment still exceeded the limits set by FAO.
Co-Authors . Saputera . Sutrisno A. Trisnobudi Adiarifia, Nissa Agus A Munawar Ahmuhardi Abdul Azis Akbar, Arief Al Alla Asmara Amin Rejo Amoranto Trisnobudi Angga Firmansyah Anggie Yulia Sari Arfandi Hermawan Aris Purwanto Aryanis Mutia Zahra Bambang Haryanto Bambang Haryanto Bambang Haryanto Bambang Haryanto BAMBANG S. PURWOKO Bambang S. Purwoko Deva Primadia Dheni Mita Mala Diego Mauricio Cano-Reinoso Distriani, Putri Ayu Ira Dwi Dian Novita Dyah Wulandani Ei Mon Kyaw Elisa Eka Ari Purwanti Ningsih Elizabeth Sonya Lumbantoruan Emmy Darmawati Farida Kurniasari Fila Rodotul Jannah Fiona Hanberia Innayah Firmansyah, Angga Hadi K. Purwadaria Hadi K. Purwadaria Hadi K. Purwadaria Hafiz Fajrin Aditama handayani, yossi Haris Mawardi Harmi Andrianyta Hermawan, Arfandi Herna Permata Sari I Dewa Made Subrata Indah Kurniasari Irmansyah . Jajang Juansah Jajang Juansah Jati Sumarto Putro Jonni Firdaus, Jonni KUDANG B. SEMINAR Kurniasari, Farida La Rianda LADY C. E. CH. LENGKEY Lady Lengkey Lalu Hendri Setiawan Mar'atus Sholihah mardiantono Mardiantono Mawardi, Haris Mohamad Solahudin Nelwan, Leopold Oscar Ningsih, Elisa Eka Ari Purwanti Noneng Fahri Nur Arifiya Okasyari, Chorida Omil Charmyn Chatib Permatasari, Ressy Angli Ressy Angli Permatasari Rini Rosita Rizal Syarief Rizky Wiradinata Rizky Wiradinata Rokhani Hasbullah Ruri Wijayanti Samsudin Samsudin SEDARNAWATI YASNI Semin Semin Shinichiro Kuroki Siti Djamila Slamet Susanto Slamet Widodo Slamet Widodo Slamet Widodo Sobir Sobir Sri Agustina Sri Citra Yuliana Madi Sugiyono . Sugiyono . Sukrisno Widyotomo Suroso . Suroso . Suroso Suroso Sut risno SUTRISNO Sutrisno Sutrisno - Sutrisno . Sutrisno Mardjan Sutrisno Sutrisno Sutrisno Sutrisno Sutrisno Sutrisno Sutrisno, Sutrisno Syahrullah, Andi Ulfa Hardianty Syamsiar, Syamsiar Tarisa Fadillah Titis Priyowidodo Trisma Rezeki Zairisman Usman Ahmad Verra Mellyana Vita N. Lawalata Wendianing Putri Luketsi Wiranda G. Piliang Y. Aris Purwanto Yohanes Aris Purwanto Yul Y Nazaruddin Yunisa Tri Suci