Claim Missing Document
Check
Articles

Pengujian Kesesuaian Fungsional Augmented Reality Pola Batik Dayak Kenyah Muhammad Bambang Firdaus; Anton Prafanto; Joan Angelina Widians; Andi Tejawati; Renol Sulle; Zainal Arifin
Sains, Aplikasi, Komputasi dan Teknologi Informasi Vol 4, No 2 (2022): Sains, Aplikasi, Komputasi dan Teknologi Informasi
Publisher : Universitas Mulawarman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jsakti.v4i2.8737

Abstract

Batik Indonesia telah ditetapkan sebagai Warisan Kemanusiaan Budaya Lisan dan Nonbendawi oleh UNESCO sejak 2 Oktober 2009. Saat ini, pengenalan media mengikuti perkembangan teknologi yang ada. Salah satunya adalah pengenalan media melalui pemanfaatan teknologi AR. Kami menghadirkan motif batik Dayak Kalimantan Timur menggunakan teknologi augmented reality dan diharapkan dapat menjadi media alternatif yang lebih interaktif untuk menampilkan budaya Indonesia, khususnya di Kalimantan Timur. Pengujian black-box dan usability diperlukan untuk mengetahui seberapa baik kinerja sistem saat digunakan sebagai bahan baku kerajinan di Kalimantan Timur. dimana hasil pengujian black box merupakan hasil pengujian yang baik untuk 6 fungsi dan standar. Dengan hasil klasifikasi yang baik, usability mencapai 76%
Marker Based Tracking Augmented Reality Alat Musik Tradisional Khas Kalimantan Timur Muhammad Bambang Firdaus; Gandhi Dwi Laksono; Anton Prafanto; Awang Harsa Kridalaksana
JNANALOKA Vol. 04 No. 01 Maret Tahun 2023
Publisher : Lentera Dua Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36802/jnanaloka.2023.v4-no01-27-34

Abstract

Alat musik dikenal oleh hampir seluruh dunia terutama Indonesia, banyak alat musik daerah yang terlupakan maka dari itu penelitian ini membuat aplikasi pengenalan alat musik khas Kalimantan Timur untuk memberikan pengenalan alat musik kepada masyarakat. dalam dunia teknologi terdapat augmented reality yaitu teknologi penggabungan dunia nyata dan virtual, yang bersifat real-time dan merupakan wujud 3 Dimensi. Tujuan dari penelitian ini adalah untuk mengenalkan alat musik khas Kalimantan Timur berupa aspek-aspek mendasar mengenai alat musik, bentuk alat musik, bahan alat musik beserta suara yang dihasilkan oleh alat musik khas Kalimantan Timur berbasis android dengan menerapkan metode Marker Based Tracking Augmented Reality. Aplikasi Augmented Reality ini akan menampilkan 3 objek alat musik dari Provinsi Kalimantan Timur yang terdiri dari Sampek, Kadire dan Kelentengan yang dibuat menggunakan Blender dan Unity. Aplikasi mampu tracking marker dalam jarak minimum 10 cm dengan sudut kemiringan 10° dan jarak maksimum 50 cm dengan sudut kemiringan 70°. Semakin dekat jarak posisi smartphone maka lebih baik untuk mendeteksi image target pada buku saku, maka pendeteksian semakin baik. Berdasarkan rangkuman hasil dari pengisian kuesioner oleh responden 15 orang terdapat di angka 86,04% maka dikatakan Aplikasi ARmus Pengenalan Alat Musik Khas Kalimantan Timur efektif dan berjalan sesuai kriteria uji kualitas software.
Rancang Bangun Aplikasi Presensi Pegawai Berbasis Area Menggunakan Geolocation Muhammad Bambang Firdaus; Gubtha Mahendra Putra; Muhammad Wisdan Pratama Putra; Nariza Wanti Wulan Sari; M Khairul Anam; Eva Yumami
METIK JURNAL Vol 7 No 1 (2023): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/metik.v7i1.406

Abstract

Kehadiran merupakan salah satu faktor disiplin yang diupayakan untuk mendorong disiplin kelembagaan. Sistem absensi yang khas di suatu sekolah atau universitas adalah dengan memanfaatkan sidik jari atau secara manual yaitu dengan menuliskan nama atau membuat inisial. Peneliti berharap dapat memberikan solusi dengan mengembangkan aplikasi sistem absensi berbasis android yang mampu mengatasi beberapa kekurangan dari sistem absensi manual tersebut, seperti menghentikan siswa membubuhkan tanda tangan atau ada yang curang untuk memodifikasi waktu di jari. mencetak. Pengujian ini memastikan bahwa setiap bagian sesuai dengan alur proses yang ditentukan, dan bahwa fitur aplikasi beroperasi sesuai dengan perannya. Hasil pengujian Black Box Testing menunjukkan sistem aplikasi presensi online dapat berjalan dengan baik, setelah dilakukan pengujian diimplementasikan di Kantor Kesehatan Pelabuhan Samarinda Kalimantan Timur. Sistem aplikasi presensi online memiliki 2 jenis user yaitu admin dan user.
Perancangan Model Animasi 3D Transportasi Air Pada Sungai Karang Mumus Tiopan Henry Manto Gultom; Hasyim Asyari; Muhammad Bambang Firdaus
Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer Vol 17, No 2 (2022): Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer
Publisher : Mulawarman University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30872/jim.v17i2.11708

Abstract

Samarinda ialah ibukota Kalimantan timur yang memiliki 7 sungai, salah satunya sungai Karang Mumus. Sungai Karang Mumus menawarkan peluang bagi pengembangan transportasi sungai di Kota Samarinda. Salah satu kawasan yang dilalui oleh Sungai Karang Mumus adalah Universitas Mulawarman (UNMUL). Penelitian ini bertujuan untuk menghasilkan gambaran rancangan mengenai moda transportasi air di sungai Karang Mumus, dan memberikan  informasi  dalam  bentuk  animasi  3  Dimensi  mengenai transportasi sungai dan lingkungan sekitar di Sungai Karang Mumus Unmul. Untuk membangun Perancangan Model Animasi 3D Transportasi Air Pada Sungai Karang Mumus Universitas Mulawarman.  Metode perancangan model yang diimplementasikan ialah Multimedia Development Life Cycle (MDLC). Output pada penelitian ini berupa video animasi. Pemanfaatan transportasi air menjadi transportasi umum bisa menjadi solusi dalam menyelesaikan kemacetan kota. Selain itu juga menjadi jalur masuk alternatif universitas unmul yang beberapa jalur ditutup.
Sentiment Analysis for Online Learning using The Lexicon-Based Method and The Support Vector Machine Algorithm M. Khairul Anam; Triyani Arita Fitri; Agustin Agustin; Lusiana Lusiana; Muhammad Bambang Firdaus; Agus Tri Nurhuda
ILKOM Jurnal Ilmiah Vol 15, No 2 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i2.1590.290-302

Abstract

The pros and cons regarding online learning has been a hot topic in society, both on social media and in the real world. Indonesian netizens still post opinions about online learning on social media such as Twitter. This study aims to analyze public comments to determine whether the trend of the comments is positive, negative, or neutral. The classification of netizen opinions is called sentiment analysis. This study applies 2 ways of carrying out sentiment analysis. The first stage employs the SVM algorithm with data labeling automatically obtained from the Emprit Academy drone portal while the second stage is still using the SVM algorithm but the data labeling with lexicon-based method. The results of this study are comparisons of labels obtained automatically from the Emprit Academy drone portal and labeling using lexicon based. The SVM algorithm obtains an accuracy of 90%, while the use of lexicon-based increases the accuracy value by 5% to 95%. It can be concluded that labeling data using a lexicon-based method can improve the accuracy of the SVM algorithm.
Analysis and Identification of Non-Impact Factors on Smart City Readiness Using Technology Acceptance Analysis: A Case Study in Kampar District, Indonesia M. Khairul Anam; Arda Yunianta; Hasan J. Alyamani; Erlin Erlin; Ahmad Zamsuri; Muhammad Bambang Firdaus
Journal of Applied Engineering and Technological Science (JAETS) Vol. 5 No. 1 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v5i1.2401

Abstract

Most countries start to implement Smart Cities as an innovation for urban strategy. However, not all Smart Cities implementations worked and were implemented well, because the community still not ready for the implementation of Smart City. The aim of this research is to investigate community readiness and finding low impact factors for implementing smart cities based on 5 factors, namely AU, PEOU, ATU, BIU, and PU. This research was using a qualitative study with the Technology Acceptance Model approach (TAM) to investigate the relationship between 5 factors. Based on the results of data distribution, there are 2 clusters, namely people who know about public service applications and people who are not aware of any public service applications. Furthermore, there are 3 tests conducted in this research namely T-test, F-test and Coefficient Determination Test to determine the impact and influence of the relationship between each factor. However, from the results of the t-test it was found that there were 2 relationships that had no impact because the t-count was negative and the 2 relationships between these factors were between PU - AU and AU - PU.
K-Means Clustering to Identity Twitter Build Operate Transfer (BOT) on Influential Accounts M. Khairul Anam; Ike Yunia Pasa; Kartina Diah Kusuma Wardhani; Lusiana Efrizoni; Muhammad Bambang Firdaus
ComTech: Computer, Mathematics and Engineering Applications Vol. 14 No. 2 (2023): ComTech
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/comtech.v14i2.10620

Abstract

Twitter is a popular social media with hundreds of millions of users, but some are not human. About 48 million accounts are created by Build Operate Transfer (BOT), which represents up to 15% of all accounts. BOTs are created for various purposes, one of which is to post information about news automatically. However, BOTs have also been abused, such as spreading hoaxes or influencing public perception of a topic. The research aimed to determine which Twitter accounts were identified as BOT accounts based on predefined attributes. The research used tweet data from 213 Twitter accounts. The accounts used as test data were accounts that had influence. After that, the data were clustered using k-means using the attributes of retweets + replies count, followers count, account age, friends count, status count, digits count in name, username length, name similarity, name ratio, and likes count. The results show the optimal number of clustering at k = 3 on the Sum of Squared Errors (SSE) evaluation and the Elbow method and the best quality and cluster power at k = 2 on the silhouette coefficient. It shows that the clustered accounts with the highest number of members on each attribute are places for accounts with high BOT scores from several aspects of the BOT score type.
Pengembangan Virtual Tour untuk Perpustakaan Universitas Mulawarman Muhammad Bambang Firdaus; Anjas, Andi; Tejawati, Andi; Taruk, Medi; Wardhana, Reza; Alameka, Faza
METIK JURNAL Vol 8 No 1 (2024): METIK Jurnal
Publisher : LPPM Universitas Mulia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47002/metik.v8i1.765

Abstract

Advances in technology have now spread to all aspects of life and profession. When archiving, it is appropriate to use a computerized system to make archiving and processing letters easier. but there are still few who take advantage of current technological advances. One of them is the TEXMACO PURWASARI Vocational High School which still archives letters in paper form (hard copy). Manual archiving has weaknesses that pose many risks. By designing the UI/UX of an archival information system, it is hoped that it can solve existing problems. In designing the UI/UX, apply the user center design (UCD) method, which is a method for analyzing the UI/UX design of an electronic archival information system. seen from the system user's perspective, so that the system design is designed according to the user's needs. This research aims, apart from producing a UI/UX design design for an electronic archival information system using the User Centered Design (UCD) method, to also evaluate usability using the system usability scale method (SUS) to measure the feasibility of the Letter Archiving Information System that has been designed. The result of this research is an archival information system design that is equipped with a database design that is tailored to user needs.
Testing the Augmented Reality Functional Suitability of Wood as Raw Materials for Typical Crafts of East Borneo Muhammad Bambang Firdaus; Zainal Arifin; Ruri Widi Priatna
JTKSI (Jurnal Teknologi Komputer dan Sistem Informasi) Vol 4, No 3 (2021): JTKSI
Publisher : Institut Bakti Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56327/jtksi.v4i3.1052

Abstract

Borneo wood which has good quality wood for building basic materials and other purposes, has been widely known and sold. There are more than 120 types of wood, some of them are from Kalimantan. Cempaka wood, Putat wood, Mentibu wood, Meranti wood, Merbabu wood, Ironwood, Teak wood, and Sengon wood are included in various types, both endemic and from Borneo. This research is a continuation of previous research that has been running on the initial development of AR Wood, Raw Materials for Typical Crafts of East Borneo. This research aims to test forestry applications for information or socialization of the classification and utilization of East Borneo typical wood. This research objective can be achieved by using Augmented Reality (AR) technology which can incorporate almost all levels of virtual object society into the real environment and also use Android mobile technology. Therefore, functional adequacy testing is needed, namely black box testing and usability to find out how much the system can meet the needs if it is used as a raw material for East Borneo handicrafts, where the results of black box testing are good in test results for six features and standards. When using wood as a raw material, tests are carried out. With good classification results, usability reached 71.6%.
Sara Detection on Social Media Using Deep Learning Algorithm Development M. Khairul Anam; Lucky Lhaura Van FC; Hamdani Hamdani; Rahmaddeni Rahmaddeni; Junadhi Junadhi; Muhammad Bambang Firdaus; Irwanda Syahputra; Yuda Irawan
Journal of Applied Engineering and Technological Science (JAETS) Vol. 6 No. 1 (2024): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v6i1.5390

Abstract

Social media has become a key platform for disseminating information and opinions, particularly in Indonesia, where SARA (Ethnicity, Religion, Race, and Intergroup) issues can fuel social tensions. To address this, developing an automated system to detect and classify harmful content is essential. This study develops a deep learning model using Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to detect SARA-related comments on Twitter. The method involves data collection through web scraping, followed by cleaning, manual labeling, and text preprocessing. To address data imbalance, SMOTE (Synthetic Minority Over-sampling Technique) is applied, while early stopping prevents overfitting. Model performance is evaluated using precision, recall, and F1-score. The results demonstrate that SMOTE significantly improves model performance, particularly in detecting minority-class SARA comments. CNN+SMOTE achieves a accuracy of 93%, and BiLSTM+SMOTE records a recall of 88%, effectively capturing patterns in SARA and non-SARA data. With SMOTE and early stopping, the model successfully manages class imbalance and reduces overfitting. This research supports efforts to curtail hate speech on social media, especially in the Indonesian context, where SARA-related issues often dominate public discourse.