Claim Missing Document
Check
Articles

RESOURCE GOVERNANCE EVALUATION TO ENHANCE COMPETITIVE ADVANTAGE IN BANKING: A COBIT 5 APPROACH Gustian Rama Putra; Wahyu Sardjono; Rafi Athallah; Andi Nurkholis
Jurnal Teknoinfo Vol 17, No 2 (2023): Vol 17, No 2 (2023) : JULI
Publisher : Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/jti.v17i2.2628

Abstract

Bank XYZ is a bank that has been standing for more than 40 years and is engaged in giving the best of financial services. The company has been improving the use of IS/IT within the company for the past few years to support and elevate their business process to the next level and gaining competitive advantages in the banking sector. Within the development of there IS/IT services, the company stumbled on a few problems regarding IT resources used in the company. For this reason, in this study, the researcher took measurements of the levels of capability in IT Resource governance using the COBIT 5 framework as a standard framework for IT governance. The result of this research showed that the average enterprise capability is still at level 1 (performed) where the company’s target is level 3 (established)
METODE VECTOR SPACE MODEL UNTUK WEB SCRAPING PADA WEBSITE FREELANCE Andi Nurkholis; Yusra Fernando; Faris Arkans Ans
INTI Nusa Mandiri Vol 18 No 1 (2023): INTI Periode Agustus 2023
Publisher : Lembaga Penelitian dan Pengabdian Pada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33480/inti.v18i1.4266

Abstract

Abstract— In digitalization era, internet is at the center of all lines of community activity, just like the field of work. Currently, many platforms provide job vacancies, especially for freelancers. To obtain this information, users usually need to open several websites to find information about suitable job vacancies. Web scraping offers solution to overcome these problems. Based on research that has been done, the BeautifulSoup and Selenium libraries will be used to collect data. To search for data, vector space model method is used to find the level of data similarity between the query and the document. In exploring data, the average near-perfect recall value is 98%, while the average precision value is 56%. This is because data search uses three parameters, so the possibility of retrieving irrelevant data is more significant if the document contains a word in the user's query, even though the context does not match. Utilizing the Streamlit framework in Python can display the data processing results and help users navigate the web scraping process, data processing, and data search. This study aims to implement the web scraping method to retrieve data from freelance websites: Freelance, Project, and Sribulancer. By applying the vector space model method, users can search data from several websites without opening freelance websites one by one. Using data visualization in the form of a web application using the Streamlit framework, the web scraping results can also be processed to be presented in a more helpful form and save the user's time
Prediction Model for Soybean Land Suitability Using C5.0 Algorithm Andi Nurkholis; Styawati Styawati
JOIN (Jurnal Online Informatika) Vol 6 No 2 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i2.711

Abstract

Soybean is one of the protein main sources that can be used for consumption in tempeh, tofu, milk, etc. Based on projection results, soybean production and consumption balance in Indonesia, in 2018-2022, it is estimated that deficit will increase by 6.18% per year. So, it's necessary to guide soybean land suitability, which can be carried out by evaluating existing land suitability to support soybean farming expansion and production. This study conducted an analytical study to evaluate soybean land suitability using C5.0 algorithm based on land and weather characteristics. The C5.0 algorithm is an extension of spatial decision tree, an ID3 decision tree extension. Dataset is divided into two categories: explanatory factors representing seven land characteristics (drainage, land slope, base saturation, cation exchange capacity, soil texture, soil pH, and soil mineral depth) and two weather data (rainfall and temperature), and a target class represent soybean land suitability in two study areas, namely Bogor and Grobogan Regency. The result generated two land suitability models with the best model obtained accuracy for training data 98.58%, while testing data was 97.17%. The best model rules are 69 rules that do not involve three attributes: cation exchange capacity, soil mineral depth, and rainfall.
APLIKASI PENYEWAAN LAPAANGAN FUTSAL MENGGUNAKAN TEKNOLOGI VIRTUAL TOUR 360 VIEW PADA BSC FUTSAL BERBASIS ANDROID Muhammad Aldhi Septianto; andi Nurkholis; Erliyan Redy Susanto
TELEFORTECH : Journal of Telematics and Information Technology Vol 4, No 1 (2023): TELEFORTECH VOL4, NO 1 (JULI 2023)
Publisher : Fakultas Teknik dan Ilmu Komputer, Universitas Teknokrat Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33365/tft.v4i1.3404

Abstract

Berdasarkan observast yang telah dilakukan bahwa penyewaan yang ada saat ini mash secara konvensional yaitu dengan menggunakan buku penyewaan dan media Whatsapp. Sistem ini dinilai mash belum efektif dan efisien. Adapun masalah yang dialami pertama dalam pengolahan data, terkadang pengelola lupa mencatat data penyewa korena ketidak telitian pengelole dalam mencatat informasi tersebut.Shingga penelition ini bertujuan untuk membangun sistem penyewaan lapangan secaro realtime dan interaktif don sistem untuk menyimpan dan menampung data kedalam database. Sistem dibangun dengan menggunakan metode penelitian Rapid Application Development (RAD), don menggunakan bahasa pemrograman Java dan PHP dengan tools Android Studio dan juga Laravel, untuk pengolahan database menggunakon database MySQL dan SOLite. Penelition ini berhasil dengan mendapatkon penilaian Sangat Baik pada pengujian ISO 25010, dengan hasil presentase sebesar 100% untuk pengujian functional suitability, 100% untuk pengujian security dan 93,6% untuk pengujian usability, maka diperoleh lah hasit akhir penilalan presentase yang berjumlah 97.896.
Analisis Sentimen Masyarakat Indonesia Terkait Vaksin Covid-19 Pada Media Sosial Twitter Menggunakan Metode Support Vector Machine (Svm) Muhammad Fadilah Arfat; Styawati Styawati; Andi Nurkholis; Indra Kurniawan
Jurnal Informatika: Jurnal Pengembangan IT Vol 7, No 2 (2022)
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/jpit.v7i2.3549

Abstract

COVID-19 is a new disease outbreak that has been officially designated as a global pandemic by the Worldi Health Organizationi (WHO) oni March 11, 2020. Seeing the rapid development of COVID-19, the Government of Indonesia has carried out vaccinations that have been carried out since January 13, 2021, this vaccination is prioritized for medical personnel and red zone areas. Since its emergence, therei have been many prosi andi consi regardingi the vaccination process and it has alsoi become a trending topici on sociali media Twitter oni January 13, 2021. Onei of the mosti widely used social media by Indonesiani people isi twitter sociali media. According to We arei Social sources in 2020, twitteri social media is rankedi fifth in the category of sociali media that is often used with a user percentage of 56% after Youtube, Whatsapp, Facebook as well as Instagram. Thisi shows that there is a huge opportunity for data sources that can be usedi to find out the positive and negativei sentiments of the related community, which is useful for interested parties to carry out evaluations. So that it can see how many people agree and disagree. If the percentage of people who disagree is more, the government must do better socialization so that people can better understand and not feel afraid of the vaccine. This study aims to find out how public sentiment is about the government's policies regarding the COVID-19 vaccinei using the Support Vector Machine method. by extracting the tf-idf feature and comparing the kernels contained in the SVM, including Linear, RBF, Polynomial, and Sigmoid. With tests that will later see how the values of accuracy, precision, recall and F1-Score are. 
Sistem Informasi Pengelolaan Deposit Bola Golf Berbasis Website Andi Nurkholis; Iwan Syahputra; Temi Ardiansah
Jurnal Media Celebes Vol. 1 No. 1 (2023): Volume 1 Nomor 1 September 2023
Publisher : CV. Keranjang Teknologi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58602/mediacelebes.v1i1.12

Abstract

Rizki Golf Driving Range is a driving range that provides facilities according to the needs of visitors, there is a system that is done manually, namely managing golf ball deposit funds. The data management process still uses ledgers and members must come directly to the Rizki Golf Driving Range to make deposits and the calculations are still done conventionally using a calculator and the data is stored in archive form. extreme programming development method and will be implemented using the PHP programming language and MySQL as the database. This system will be tested using ISO 25010. The results of this study are the stages in managing deposit data so that it can assist in decision making. With several differences in this study, namely using a system that can see the remaining deposits per member and complete information about deposit funds made online. with a total average of 91.01%.
Penerapan Laravel Pada Sistem Jual Beli Seafood Bagas Aditama; Adhie Thyo Priandika; Andi Nurkholis
Jurnal Media Jawadwipa Vol. 1 No. 1 (2023): Volume 1 Number 1 October 2023
Publisher : CV. Keranjang Teknologi Media

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58602/mediajawadwipa.v1i1.22

Abstract

Sistem Jual beli Seafood dengan Studi Kasus CV Mini Plant Mandiri, dibangun dengan menggunakan Framework Laravel dan metode yang digunakan yaitu Waterfall. Sistem dibuat dengan menggunakan tools yaitu Visual Studio Code, dan MySQL sebagai penyimpan Database nya. Pengujian yang dilakukan menggunakan ISO 25010. Hasil perhitungan pengujian yang telah dilakukan menggunakan ISO 25010 yaitu dengan pengujian Functionality menghasilkan nilai sebesar 100% dan untuk pengujian Usability menghasilkan nilai 95,18%. Dari hasil penilaian ini sudah ditarik kesimpulan bahwa sistem yang dibuat sudah memenuhi syarat untuk digunakan. Hasil dari dibuatkannya sistem ini adalah agar mempermudah Admin, Supplier dan Mitra pada saat melakukan transaksi jual beli Seafood yang terjadi pada CV Mini Plant Mandiri.
Analisis Perbandingan Algoritma LSTM dan Naive Bayes untuk Analisis Sentimen Auliya Rahman Isnain; Heni Sulistiani; Bagus Miftaq Hurohman; Andi Nurkholis; Styawati Styawati
JEPIN (Jurnal Edukasi dan Penelitian Informatika) Vol 8, No 2 (2022): Volume 8 No 2
Publisher : Program Studi Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jp.v8i2.54704

Abstract

New Normal merupakan sebuah sebutan bagi kebijakan pemerintah untuk mengizinkan masyarakatnya melakukan aktifitas seperti biasa di tengah pandemi Covid-19 yang sedang melanda dengan tetap memperhatikan protokol kesehatan. Kebijakan ini menimbulkan berbagai tanggapan dari masyarakat terutama di media sosial twitter. Untuk itu, diperlukan proses analisis sentimen untuk melakukan pemrosesan terhadap teks yang didapat dari twitter. Analisis sentimen adalah bentuk representasi dari text mining dan text processing. Pada penelitian ini melakukan perbandingan kinerja metode Long Short Therm Memory dengan Naïve Bayes terhadap analisis sentimen Kebijakan New Normal. Hasil yang diperoleh dari penelitian ini yaitu metode  LSTM memiliki kinerja yang lebih baik bila dibandingkan dengan Naïve Bayes. Metode LSTM menghasilkan nilai akurasi, presisi dan recall sebesar 83.33%. Sedangkan metode Naïve Bayes memiliki nilai akurasi, presisi dan recall sebesar 82%.
Firefly Algorithm for SVM Multi-class Optimization on Soybean Land Suitability Analysis Andi Nurkholis; Styawati Styawati; Alvi Suhartanto
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.1860

Abstract

Soybean is the primary source of vegetable protein nutrition, containing fat and vitamins that Indonesian people widely consume. The decline in soybean production in Indonesia every year is due to the reduced area of soybean cultivation, thereby increasing dependence on imports from other countries. Land suitability maps can provide directions for priority locations for soybean cultivation based on land characteristics and weather to produce optimal production. The SVM multi-class algorithm has been applied to classify land suitability data to create a land suitability map but has yet to obtain optimal accuracy, especially for sigmoid kernels. The objective of this study is to enhance the performance of the sigmoid kernel SVM by utilizing the firefly algorithm. The study focuses on evaluating the suitability of soybean cultivation in Bogor and Grobogan Regencies. The results of the tests indicate that the firefly algorithm-optimized SVM (FA-SVM) significantly improves accuracy compared to the SVM without optimization. The accuracy achieved by FA-SVM is 89.95%, while the SVM without optimization only achieves an accuracy of 65.99%. The best parameters produced by the firefly algorithm are C=2.33 and σ=0.45 obtained from firefly customization, and the number of generations is 10. Based on this, the optimization algorithm can be used to produce an optimal model. The best optimal model obtained can be used as a guide for priority locations/areas for soybean cultivation by farming communities, so as to produce maximum soybean productivity.
Prediction Model for Soybean Land Suitability Using C5.0 Algorithm Andi Nurkholis; Styawati Styawati
JOIN (Jurnal Online Informatika) Vol 6 No 2 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i2.711

Abstract

Soybean is one of the protein main sources that can be used for consumption in tempeh, tofu, milk, etc. Based on projection results, soybean production and consumption balance in Indonesia, in 2018-2022, it is estimated that deficit will increase by 6.18% per year. So, it's necessary to guide soybean land suitability, which can be carried out by evaluating existing land suitability to support soybean farming expansion and production. This study conducted an analytical study to evaluate soybean land suitability using C5.0 algorithm based on land and weather characteristics. The C5.0 algorithm is an extension of spatial decision tree, an ID3 decision tree extension. Dataset is divided into two categories: explanatory factors representing seven land characteristics (drainage, land slope, base saturation, cation exchange capacity, soil texture, soil pH, and soil mineral depth) and two weather data (rainfall and temperature), and a target class represent soybean land suitability in two study areas, namely Bogor and Grobogan Regency. The result generated two land suitability models with the best model obtained accuracy for training data 98.58%, while testing data was 97.17%. The best model rules are 69 rules that do not involve three attributes: cation exchange capacity, soil mineral depth, and rainfall.
Co-Authors Adhie Thyo Priandika Adi Sucipto, Adi Ady Candra Nugroho Afifudin Afifudin Aftirah, Nadia Agung Riyantomo Ahmad Ari Aldino Aldi Bagus Prasetyo Alita, Debby Alvi Suhartanto Alvi Suhartanto Andrey Ferriyan, Andrey Anjumi, Krisma Nur Annisa Annisa Ans, Faris Arkan Arief Budiman Aris Munandar Bagas Aditama Bagus Miftaq Hurohman Berlintina Permatasari Dalimunthe, Ernando Rizki Damayanti, Damayanti Donaya Pasha Dyah Ayu Megawaty Eka Saputra Ellin Gusbriana Erliyan Redy Susanto Fahreza Aditya Aryatama Faris Arkans Ans Fernando, Yusra Gusti Firmansyah Gustian Rama Putra Harry Gunawan Heni Sulistiani I Ketut Wahyu Gunawan Imas Sukaesih Sitanggang Indra Kurniawan Irsan, Aqilla Hattami Irwan Tubagus Isnain, Auliya Rahman Iwan Syahputra Johansyah Johansyah johansyah johansyah Jupriyadi Jupriyadi Jupriyadi, Jupriyadi Kartini, Nuri Koeswara, Wawan Leny Meilisa M Fabian Apriando Maria Ainun Nazar Mega Desi Diah Ayu Megawaty, Dyah Ayu Mohammad Tafrikan Muhammad Aldhi Septianto Muhammad Fadilah Arfat Muhammad Fauzan Ramadhani Muhammad Fitratullah Muhammad Hamdan Sobirin Muhaqiqin Muhaqiqin muhaqiqin Nadia Aftirah Nadiya Safitri Neneng Neneng Ni’mawati, Akfina Oktora, Putri Suci Pasaribu, A. Ferico Octaviansyah Pasha, Donaya Prasetyo, Aditya Dwi Pria Agung Laksono Purwayoga, Vega Rafi Athallah Rahayu, Masnia Rahayu, Ririn Wuri Ramadhani, Muhammad Fauzan Renda Bimantara Rikendry Rikendry Rio Andika Rulyansyah Permata Putra S. Samsugi Sampurna Dadi Riskiono Saputra, Alvin Saputra, Hendi Setiawansyah Setiawansyah Sitanggang, Imas S. Siti Yuliyanti, Siti Sobir Sobir Sokid, Sokid Styawati Styawati Styawati, S Styawati, Styawati Susanto, Erliyan Redy Syahirul Alim Syahirul Alim Syaiful Ahdan Temi Ardiansah Tia Nanda Pratiwi Tiara Azizul Andika Tiyas Utami Tri Widodo Try Susanto Veithzal Rivai Zainal Wahyu Sardjono Wawan Koswara Wijaya, Suhenda Yeris Ari Sandi Yopita Anggela Yuri Rahmanto Yusra Fernando Zaenal Abidin Zahra Kharisma Sangha Zahrina Amalia Zainabun Mardiyansyah