p-Index From 2021 - 2026
12.236
P-Index
This Author published in this journals
All Journal IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA SITEKIN: Jurnal Sains, Teknologi dan Industri Prosiding Semnastek Scientific Journal of Informatics Sistemasi: Jurnal Sistem Informasi Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA IT JOURNAL RESEARCH AND DEVELOPMENT Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi INFORMASI (Jurnal Informatika dan Sistem Informasi) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Knowbase : International Journal of Knowledge in Database Indonesian Journal of Innovation Multidisipliner Research Bulletin of Informatics and Data Science Jurnal Informatika: Jurnal Pengembangan IT Indonesian Journal of Innovation Multidisipliner Research Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal CoreIT

Sistem Pendukung Keputusan Penerimaan Beasiswa Gubernur Riau Menggunakan Fuzzy dengan Metode Profile Matching Budianita, Elvia; Syahputra, Armadani
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 2, No 1 (2016): Juni 2016
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (994.676 KB) | DOI: 10.24014/coreit.v2i1.2352

Abstract

Beasiswa Gubernur Riau bertujuan meningkatkan kualitas pendidikan yang ada di Provinsi Riau. Penelitian ini ditujukan kepada beasiswa program D3 dan S1, dengan kriteria penilaian seperti status keluarga, penghasilan wali perbulan, jumlah anak dari wali, jumlah saudara menikah, jumlah saudara kandung kuliah dan belum menikah, biaya semester, semester dan IPK. Sistem ini merupakan Sistem Pendukung Keputusan (SPK) menggunakan fuzzy dengan metode profile matching. Fuzzy sebagai nilai kriterianya menutupi kekurangan profile matching menangani data yang bervariatif menjadi kesuatu nilai antara 0 sampai 1, nilai diproses dengan metode profile matching, menghasilkan sebuah perangkingan penerima beasiswa. Berdasarkan hasil pengujian SPK dari 15 data pemohon tahun sebelumnya, bahwa data 5 terbawah merupakan data yang memang tidak lulus seleksi, artinya hasil perangkingan SPK sesuai dengan yang diharapkan oleh tim penyeleksi Beasiswa Gubernur Riau dan mampu mengurangi subyektifitas penilaian.
Penerapan Learning Vector Quantization Penentuan Bidang Konsentrasi Tugas Akhir (Studi Kasus: Mahasiswa Teknik Informatika UIN Suska Riau) Budianita, Elvia; Arni, Ulti Desi
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 1, No 2 (2015): Desember 2015
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (612.198 KB) | DOI: 10.24014/coreit.v1i2.1235

Abstract

Penentuan bidang konsentrasi studi tugas akhir diharapkan dapat mempermudah mahasiswa dalam menentukan bidang tugas akhirnya sesuai dengan pola nilai mata kuliah yang diambilnya. Banyaknya bidang tugas akhir membuat mahasiswa merasa bingung menentukan tema tugas akhirnya. Sehingga banyak mahasiswa menentukan bidang konsentrasi studi tugas akhirnya diluar mata kuliah yang mereka ambil. Jika mahasiswa memilih bidang konsentrasi tugas akhir sesuai mata kuliah yang mereka ambil, maka mahasiswa tersebut dapat dengan cepat menyelesaikan tugas akhirnya tanpa harus mempelajari metode terlebih dahulu. Oleh karena itu dibutuhkan sebuah media yang dapat membantu mahasiswa dalam menentukan bidang tugas akhirnya yang sesuai dengan pola nilai mata kuliah yang diambil. Metode yang digunakan yaitu Metode Learning Vector Quantization (LVQ). LVQ adalah metode jaringan syaraf tiruan yang mempelajari pola nilai dan secara otomatis belajar untuk mengklasifikasikan vektorvektor input. Kelas-kelas yang didapatkan sebagai hasil dari lapisan kompetitif ini tergantung pada jarak antara vector input. Jika dua vektor input mendekati sama, maka lapisan kompetitif akan meletakkan kedua vektor input tersebut kedalam kelas yang sama.
APPLICATION OF K-NEAREST NEIGHBOR REGRESSION METHOD FOR RICE YIELD PREDICTION Handayani, Lestari; Alfarabi.B, Alif; Aprilia, Tasya; Wulandari, Indah; Jasril, Jasril; Ramadhani, Siti; Budianita, Elvia
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 1 (2025): June 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i1.30907

Abstract

Rice plants with the Latin name Oryza Sativa are food plants that are widely used as the main food crop in various countries, one of which is Indonesia. Indonesia is ranked 4th as the largest rice consuming country in the world. This requires the availability of rice to be maintained. Unstable rice production can be a problem. One of the districts that has experienced a decline in rice production in recent years is the district of Lima puluh kota located in West Sumatra province. This requires prediction of rice production so that it can be used as a benchmark for the future. This study uses data on rice production in fifty cities from 2013 to 2023. The method used to predict is k-nearest neighbor regression (KNN Regression). The data division uses rasio 90 : 10. In testing the data used is divided into 2, namely normal data and data that has been normalized. The test results produce the smallest mean absolute percentage error (MAPE) value of 6.98% on normal data, the value of k is 6 with data division using k-fold 5. Based on the resulting MAPE value, it can be said that KNN Regression can predict rice production results very accurately.
Feature Selection using Information Gain on the K-Nearest Neighbor (KNN) and Modified K-Nearest Neighbor (MKNN) Methods for Chronic Kidney Disease Classification Ramadhan, Aweldri; Budianita, Elvia; Syafria, Fadhilah; Ramadhani, Siti
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 9, No 2 (2023): December 2023
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v9i2.26834

Abstract

Purpose: Kidneys has an important role in the human excretory system. Unhealthy kidneys can affect kidney function. It is important to know the symptoms of chronic kidney disease. One data mining technique that can be applied is the classification technique to determine whether a person has chronic kidney disease or not based on the symptoms (attributes) obtained from medical records. The symptoms of chronic kidney disease obtained amount to 24 symptoms or attributes,Methods/Study design/approach: In this research, the classification of chronic kidney disease is performed using the information gain feature selection method and the KNN and MKNN classification methods. The number of data used is 400 data with 2 classes, namely chronic kidney disease (CKD) and non-chronic kidney disease (non-CKD).Result/Findings: Based on the test results, it was found that the hemo (Hemoglobin) attribute has the highest information gain value, which is 0.6255. The best accuracy for the KNN classification method is 96.61%, and for the MKNN method, it is 98%. Novelty/Originality/Value: The purpose of information gain feature selection is to choose features or attributes that significantly influence chronic kidney disease. Keywords: Chronic Kidney Disease, Information Gain, KNN, MKNN
Comparison of Various Deep Learning Techniques to Obtain the Best Technique for Detecting Brain Cancer Yanto, Febi; Budianita, Elvia; Wang, Shir Li
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 2 (2025): December 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i2.38599

Abstract

This study aims to address the difficulty of comparing deep learning–based brain cancer detection methods due to differences in datasets and parameter settings, which limits the generalizability of previous findings. The purpose of this research is to evaluate the performance of several convolutional neural network (CNN) architectures using identical datasets and experimental configurations to determine the most effective technique for early brain cancer detection. The study builds a comparative framework using the Keras API on TensorFlow, supported by libraries such as NumPy, Pandas, Matplotlib, and Seaborn. All datasets were split into stratified training, validation, and test sets, and preprocessing included resizing images to 224×224 pixels, converting them to 3-channel RGB, normalizing the inputs, and applying data augmentation. CNN architectures, including VGG16, ResNet50, GoogleNet, and AlexNet, were trained with consistent parameter settings, including epoch count, batch size, learning rate optimization, and training protocols. Performance evaluation using accuracy, precision, recall, and F1-score shows that GoogleNet and ResNet50 achieve the highest results across datasets (average >94%), with GoogleNet slightly outperforming ResNet50. AlexNet performs poorly on the Kaggle dataset but shows potential on the private dataset, while VGG16 demonstrates moderate but less consistent performance. The originality of this study lies in providing a unified evaluation framework that enables fair comparison across CNN models, offering valuable insights for selecting optimal architectures for brain cancer detection.
Co-Authors Abdul Halim Adzhima, Fauzan Afrianti, Liza Afriyanti, Iis Agnesti, Syafira Agung Syaiful Rahman Agustina, Auliyah Aji Pangestu Adek Akbar, Lionita Asa Akhyar, Amany Al Rasyid, Nabila Alfaiza, Raihan Zia Alfarabi.B, Alif Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Ammar Muhammad Anggi Pranata Aprilia, Tasya Aprima, Muhammad Dzaky Arif Pratama Budiman Azhima, Mohd Baehaqi Berliana, Trisia Intan Boni Iqbal buhfi arides hanyodi Chely Aulia Misrun Damayanti, Elok Desra Rizki Riyandi Dicky Abimanyu Dinyah Fithara Dodi Efendi doli fancius silalahi Dwitama, Raja Zaidaan Putera Eka Pandu Cynthia Eka Pandu Cynthia Eka Pandu Cynthia Eka Suryani Indra Septiawati Elin Haerani Elin Haerani Elin Haerani Elin Haerani Ellin Haerani Fadhilah Syafria Fahrozi, Aqshol Al Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Yanto Fikri Utri Amri Fikry Utri Amri Fitri Astuti Fitri Insani Fitri Insani Fitri Insani Fitri Insani Fitri, Anisa Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Habibi, M. Ilham Hara Novina Putri Hariansyah, Jul Hasibuan, Ilham Habibi Ibnu Afdhal Ichsan Permana Putra Ihda Syurfi Ihlal Hanafi Harahap Iis Afrianty Iis Afrianty Ikhsanul Hamdi Indah Wulandari Isra Almahsa, Muhammad Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril jasril jasril jasril Jeki Dwi Arisandi Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Lola Oktavia M Fikry M Ikhsan Maulana M ridwan Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Mawadda Warohma Mazdavilaya, T Kaisyarendika Megawati Megawati Meiky Surya Cahyana Mhd. Kadarman Mohd. Ridho Zarkasih Rahim Muhammad Affandes Muhammad Fikry Muhammad Fikry Muhammad Fikry Muhammad Fikry Muhammad Irsyad Muhammad Rizky Ramadhan Mulyati, Sabar Mulyono, Makmur Musa Irfan Mustasaruddin Mustasaruddin Nabyl Alfahrez Ramadhan Amril Nanda Sepriadi Nazir, Alwis Nazruddin Safaat H Neni Sari Putri Juana Novi Yanti Novi Yanti Novriyanto Novriyanto Nur Iza Nuradha Liza Utami Nurafni Syahfitri Nurfadilah, Nova Siska Okfalisa Okfalisa Pasiolo, Lugas Permata, Rizkiya Indah Pizaini Pizaini Putri, Widya Maulida Rahmad Abdillah Rahmad Kurniawan Ramadani, Repi Ramadhan, Aweldri Ramadhani, Astrid Ramadhani, Siti Reni Susanti Reski Mai Candra Reski Mai Candra Rinaldi Syarfianto Robby Azhar Roni Salambue Rusnedy, Hidayati Said Nurfan Hidayad Tillah Saktioto Saktioto Sephia Pratista Silfia Silfia Siti Sri Rahayu Surya Agustian Suwanto Sanjaya Syahputra, Armadani Ulti Desi Arni, Ulti Desi Wahyuni, Ayu Sri Wang, Shir Li Widodo Prijodiprodjo Wiranti, Lusi Diah Yeni Fariati Yusra Yusra Yusra Yusra Yusra Yusra Yusra Yusra Yusra, Yusra Zabihullah, Fayat Zulastri, Zulastri Zulkarnain Zulkarnain