p-Index From 2021 - 2026
12.236
P-Index
This Author published in this journals
All Journal IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA SITEKIN: Jurnal Sains, Teknologi dan Industri Prosiding Semnastek Scientific Journal of Informatics Sistemasi: Jurnal Sistem Informasi Jurnal CoreIT JURNAL MEDIA INFORMATIKA BUDIDARMA IT JOURNAL RESEARCH AND DEVELOPMENT Indonesian Journal of Artificial Intelligence and Data Mining Seminar Nasional Teknologi Informasi Komunikasi dan Industri INOVTEK Polbeng - Seri Informatika Jurnal Informatika Universitas Pamulang Jurnal Nasional Komputasi dan Teknologi Informasi JURIKOM (Jurnal Riset Komputer) JOISIE (Journal Of Information Systems And Informatics Engineering) Building of Informatics, Technology and Science Zonasi: Jurnal Sistem Informasi INFORMASI (Jurnal Informatika dan Sistem Informasi) JOURNAL OF INFORMATION SYSTEM MANAGEMENT (JOISM) JOURNAL OF INFORMATION SYSTEM RESEARCH (JOSH) Journal of Computer System and Informatics (JoSYC) Jurnal Sistem Komputer dan Informatika (JSON) TIN: TERAPAN INFORMATIKA NUSANTARA Jurnal Teknik Informatika (JUTIF) Information System Journal (INFOS) Jurnal Computer Science and Information Technology (CoSciTech) Jurnal UNITEK Bulletin of Computer Science Research KLIK: Kajian Ilmiah Informatika dan Komputer Jurnal Informatika Teknologi dan Sains (Jinteks) Knowbase : International Journal of Knowledge in Database Indonesian Journal of Innovation Multidisipliner Research Bulletin of Informatics and Data Science Jurnal Informatika: Jurnal Pengembangan IT Indonesian Journal of Innovation Multidisipliner Research Jurnal Komtika (Komputasi dan Informatika)
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Computer Science and Information Technology (CoSciTech)

Analisis sentimen larangan penggunaan obat sirup menggunakan algoritma naive bayes classifier Fitri Wulandari; Elin Haerani; Muhammad Fikry; Elvia Budianita
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i1.4781

Abstract

The Indonesian government made a policy to stop consuming syrup as a form of prevention against acute kidney failure, which affects many people in Indonesia. However, the policy has caused a lot of comments from the public. These public comments can be found on YouTube, because YouTube has a large data source opportunity to be used as a research material. These comments can be processed directly without using a machine, but it is less effective and efficient. Thus, the comments are processed using machine learning methods. Based on the earlier research, the naive bayes classifier algorithm tends to be simple and easy to use. In addition, this algorithm also has a high accuracy. The amount of data used in this study is 1000 YouTube comment data related to videos regarding the policy of prohibiting the use of syrup medicine, the comments are divided into 2 category, which are positive class and negative class. The results of labeling 1000 comments obtained 704 negative comments and 296 positive comments. Based on the experiments conducted using python programming language, the highest accuracy was obtained at 74% in 70:30 data split. Furthermore, in the balanced dataset (296 positive and 296 negative comments), the highest accuracy was obtained at 64.70% with in 80:20 data split. These results represent that the naive bayes classifier algorithm is good enough at sentiment analysis about the policy of prohibiting the use of syrup drugs.
Analisis sentimen komentar youtube terhadap Anies Baswedan sebagai bakal calon presiden 2024 menggunakan metode naive bayes classifier Chely Aulia Misrun; Elin Haerani; Muhammad Fikry; Elvia Budianita
Computer Science and Information Technology Vol 4 No 1 (2023): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v4i1.4790

Abstract

One of the figures as a presidential candidate is Anies Baswedan, the former governor of DKI Jakarta who received many awards and has an effective work program policy for problems in the DKI Jakarta area. Many comments about Anies Baswedan as a 2024 presidential candidate are found on YouTube social media. Youtube facilitates users to provide comments in response to videos which can be used as sentiment analysis information to find out positive comments and negative comments. The algorithm used in this research is the naïve bayes classifier. There are five main processes in this research, namely data collection, text preprocessing, word weighting (TF-IDF), classification (Naïve Bayes Classifier) and testing. From 1009 comment data on Indonesian-language youtube related to the Anies Baswedan video as a 2024 presidential candidate. Based on the analysis results, there are 610 positive comments and 399 negative comments. The accuracy result using the naïve bayes classifier algorithm is 78% which is obtained by using a comparison of 90% training data and 10% test data.
Pencarian adverse event yang timbul akibat penggunaan obat dexamethasone menggunakan algoritma apriori Nuradha Liza Utami; Alwis Nazir; Pizaini; Elvia Budianita; Fitri Insani
Computer Science and Information Technology Vol 5 No 1 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Inflammation is the body's response to infection, irritation, or injury characterized by redness, increased temperature, swelling, and pain. Dexamethasone is one of the drugs from the corticosteroid group that is commonly used, dexamethasone has a wide indication in medicine is often considered a drug that can save lives, causing many people to then buy dexamethasone drugs without medical indications and prescriptions assuming dexamethasone drugs can treat various diseases. The use of dexamethasone can result in side effects including decreased immunity, diabetes, hypertension, moon face, osteoporosis, and cataracts. In addition to frequent side effects, adverse events may also occur. This study aims to find the relationship of adverse events that arise as a result of using dexamethasone drugs, by applying the data mining technique of association rule method with apriori algorithm. The dataset used in the research is sourced from the FDA Adverse event Reporting System (FAERS) database which is managed using the KDD stages which include data selection, cleaning, transformation, and data mining. the results of the research are implemented into the apriori algorithm data mining system and tested using the lift ratio value. The rules generated in this study have a lift ratio value of more than 1, which means that the rules generated are valid and show the benefits of these rules.
Klasifikasi Tulang Tengkorak Manusia Berdasarkan Jenis Kelamin Menggunakan Backpropagation Pada Antropologi Forensik Afrianty, Iis; Mhd. Kadarman; Elvia Budianita; Fadhilah Syafria
Computer Science and Information Technology Vol 5 No 3 (2024): Jurnal Computer Science and Information Technology (CoSciTech)
Publisher : Universitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/coscitech.v5i3.8235

Abstract

Klasifikasi tulang tengkorak berdasarkan jenis kelamin merupakan langkah utama pada antropologi forensik dalam mengidentifikasi profil sisa-sisa kerangka. Klasifikasi jenis kelamin bertujuan untuk menentukan apakah kerangka tertentu adalah milik laki-laki atau perempuan. Penelitian ini berfokus pada klasifikasi tulang tengkorak berdasarkan jenis kelamin dengan menggunakan teknik pembelajaran mesin tingkat lanjut, khususnya Backpropagation Neural Network (BPNN). Tujuan dari penelitian ini adalah untuk menunjukkan kinerja BPNN. Data yang digunakan dalam penelitian ini diperoleh dari Dr. William Howells, meliputi pengukuran kraniometri dari 2524 sampel tengkorak laki-laki dan perempuan, dengan 86 variabel seperti lebar bizygomatic dan panjang glabello-oksipital. Teknik BPNN digunakan karena kemampuannya untuk memodelkan hubungan yang kompleks dan tidak linier. Kinerja model ini dievaluasi dengan menggunakan metrik standar akurasi. Pembagian data latih dan data uji menggunakan k-fold cross-validation dengan k = 10. Penelitian ini menjalankan dua skenario uji, yaitu menggunakan satu hidden layer dan dua hidden layer. Untuk masing-masing model arsitektur menggunakan learning rate sebagai parameter uji, yaitu 0,1; 0,01; dan 0,001. Hasil penelitian menunjukkan bahwa pendekatan pembelajaran mesin dapat secara efektif membedakan antara tulang tengkorak laki-laki dan perempuan, dengan akurasi rata-rata 92,32% untuk satu hidden layer dan 90,74% untuk dua hidden layer. Hasil tersebut menunjukkan, model klasifikasi tulang tengkorak manusia berbasis gender dengan menggunakan jaringan syaraf tiruan backpropagation sangat disarankan sebagai teknik yang berhasil dalam mengklasifikasikan tulang tengkorak manusia.
Co-Authors Abdul Halim Adzhima, Fauzan Afrianti, Liza Afriyanti, Iis Agnesti, Syafira Agung Syaiful Rahman Agustina, Auliyah Aji Pangestu Adek Akbar, Lionita Asa Akhyar, Amany Al Rasyid, Nabila Alfaiza, Raihan Zia Alfarabi.B, Alif Alwis Nazir Alwis Nazir Alwis Nazir Amalia Hanifah Artya Ammar Muhammad Anggi Pranata Aprilia, Tasya Aprima, Muhammad Dzaky Arif Pratama Budiman Azhima, Mohd Baehaqi Berliana, Trisia Intan Boni Iqbal buhfi arides hanyodi Chely Aulia Misrun Damayanti, Elok Desra Rizki Riyandi Dicky Abimanyu Dinyah Fithara Dodi Efendi doli fancius silalahi Dwitama, Raja Zaidaan Putera Eka Pandu Cynthia Eka Pandu Cynthia Eka Pandu Cynthia Eka Suryani Indra Septiawati Elin Haerani Elin Haerani Elin Haerani Elin Haerani Ellin Haerani Fadhilah Syafria Fahrozi, Aqshol Al Faska, Ridho Mahardika Fatma Hayati Fauzan Adzim Febi Yanto Fikri Utri Amri Fikry Utri Amri Fitri Astuti Fitri Insani Fitri Insani Fitri Insani Fitri Insani Fitri, Anisa Fratiwi Rahayu Gusrifaris Yuda Alhafis Gusti, Siska Kurnia Guswanti, Widya Habibi Al Rasyid Harpizon Habibi, M. Ilham Hara Novina Putri Hariansyah, Jul Hasibuan, Ilham Habibi Ibnu Afdhal Ichsan Permana Putra Ihda Syurfi Ihlal Hanafi Harahap Iis Afrianty Iis Afrianty Ikhsanul Hamdi Indah Wulandari Isra Almahsa, Muhammad Iwan Iskandar Iwan Iskandar Iwan Iskandar Iwan Iskandar Jasril Jasril Jasril Jasril jasril jasril jasril Jeki Dwi Arisandi Khair, Nada Tsawaabul Lestari Handayani Lestari Handayani Lili Rahmawati Lola Oktavia M Fikry M Ikhsan Maulana M ridwan Ma'rifah, Laila Alfi Masaugi, Fathan Fanrita Mawadda Warohma Mazdavilaya, T Kaisyarendika Megawati Megawati Meiky Surya Cahyana Mhd. Kadarman Mohd. Ridho Zarkasih Rahim Muhammad Affandes Muhammad Fikry Muhammad Fikry Muhammad Fikry Muhammad Fikry Muhammad Irsyad Muhammad Rizky Ramadhan Mulyati, Sabar Mulyono, Makmur Musa Irfan Mustasaruddin Mustasaruddin Nabyl Alfahrez Ramadhan Amril Nanda Sepriadi Nazir, Alwis Nazruddin Safaat H Neni Sari Putri Juana Novi Yanti Novi Yanti Novriyanto Novriyanto Nur Iza Nuradha Liza Utami Nurafni Syahfitri Nurfadilah, Nova Siska Okfalisa Okfalisa Pasiolo, Lugas Permata, Rizkiya Indah Pizaini Pizaini Putri, Widya Maulida Rahmad Abdillah Rahmad Kurniawan Ramadani, Repi Ramadhan, Aweldri Ramadhani, Astrid Ramadhani, Siti Reni Susanti Reski Mai Candra Reski Mai Candra Rinaldi Syarfianto Robby Azhar Roni Salambue Rusnedy, Hidayati Said Nurfan Hidayad Tillah Saktioto Saktioto Sephia Pratista Silfia Silfia Siti Sri Rahayu Surya Agustian Suwanto Sanjaya Syahputra, Armadani Ulti Desi Arni, Ulti Desi Wahyuni, Ayu Sri Wang, Shir Li Widodo Prijodiprodjo Wiranti, Lusi Diah Yeni Fariati Yusra Yusra Yusra Yusra Yusra Yusra Yusra Yusra Yusra, Yusra Zabihullah, Fayat Zulastri, Zulastri Zulkarnain Zulkarnain