Claim Missing Document
Check
Articles

The Effectiveness of Worksheet-Based Tri-N on Students' Mathematical Critical and Creative Thinking Abilities Material on Linear Equations in One Variable Suroyaningsih, Putri; Widodo, Sri Adi; Agustito, Denik; Perbowo, Krisna Satrio
JIPM (Jurnal Ilmiah Pendidikan Matematika) Vol 12, No 2 (2024)
Publisher : Universitas PGRI Madiun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25273/jipm.v12i2.19052

Abstract

This research is motivated by the fact that most junior high school students have low critical and creative thinking abilities when facing mathematical problems. Even though these two abilities can be used as a basis for solving a mathematical problem, this research aims to determine the effectiveness of Tri-N based LKPD on students' critical thinking and creative thinking skills in One Variable Linear Equations material. The research method used is an experimental method with a Posttest-Only Control Design. The sample size was 39 students in a private junior high school in Piyungan, Bantul. This sample was taken using a cluster random sampling technique. The instrument used in this research is a mathematical problem test, which aims to measure critical and creative thinking abilities in dealing with mathematical problems. The data analysis technique used is the MANOVA test. The research results show that learning mathematics on equations and linear inequalities in one variable using Tri-N based worksheets does not significantly affect students' ability to think critically and creatively. In connection with the results of this research, Tri-N based LKPD on equations and inequalities in one variable can be used as an alternative teaching material for mathematics learning in equations and inequalities in one variable.Penelitian ini dilatarbelakangi bahwa sebagian besar siswa SMP memiliki kemamppuan berpikir kritis dan kreatif masih rendah saat menghadapi masalah matematis. Padahal dua kemampuan ini dapat digunakan sebagai dasar untuk menyelesaikan suatu permasalahan matematika. Penelitian ini bertujuan untuk mengetahui efektivitas LKPD berbasis Tri-N terhadap kemampuan berpikir kritis dan berpikir kreatif siswa pada materi Persamaan Linier Satu Variabel. Metode penelitian yang digunakan adalah metode eksperimen dengan desain Posttest-Only Control Design. Ukuran sampel sebesar 39 siswa SMP swasta di Piyungan, Bantul. Sampel ini diambil dengan teknik cluster random sampling. Instrumen yang digunakan dalam penelitian ini adalah tes masalah matematis yang bertujuan untuk mengukur kemampuan berpikir kritis dan kreatif dalam mengahdapi masalah matematis. Teknik analisis data yang digunakan adalah uji MANOVA. Hasil penelitian menunjukkan bahwa pembelajaran matematika pada materi persamaan dan pertidaksamaan linier satu variabel menggunakan LKS berbasis Tri-N tidak berpengaruh signifikan terhadap kemampuan siswa dalam berpikir kritis dan kreatif. Berkaitan dengan hasil penelitian ini, LKPD berbasis Tri-N pada materi persamaan dan pertidaksamaan satu variabel dapat digunakan sebagai alternatif bahan ajar pembelajaran matematika pada materi persamaan dan pertidaksamaan satu variabel.
Mathematical induction, transfinite induction, and induction over the continuum Agustito, Denik; Sukiyanto, Sukiyanto; Kuncoro, Krida Singgih
International Journal of Mathematics and Mathematics Education (IJMME) Vol. 1 No. 2 (2023)
Publisher : EDUPEDIA Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.617 KB) | DOI: 10.56855/ijmme.v1i02.385

Abstract

This article examines three types of induction methods in mathematics: mathematical induction, transfinite induction, and induction over the continuum. If a statement holds true for all natural numbers, it is proven using mathematical induction. If a statement holds true for all ordinal numbers, it is proven using transfinite induction. Since induction over the continuum cannot be applied to a statement, when something is said to be proven true for every point in [a, b), the proof is done using induction over the continuum.
Direct Product dan Direct Sum dari Keluarga Grup Abelian Agustito, Denik; Kuncoro, Krida Singgih; Sukiyanto, Sukiyanto; Istiqomah, Istiqomah
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 7 No 2 (2022): September 2022 - February 2023
Publisher : Prodi Pendidikan Matematika Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v7i2.3044

Abstract

Eksistensi dari direct product dalam kategori grup abelian ada; jika diberikan keluarga grup abelian yaitu {(G_i,+_i )?i?I} maka direct productnya adalah ?_(i?I)?G_i dan  extrenal direct sumnya juga ada yaitu ?_(i?I)?G_i. Kemudian jika diberikan sebuah keluarga subgrup normal dari grup abelian G yaitu {N_i?i?I}, maka internal direct sumnya juga ada dan dinotasikan dengan G=(_i?I^?)N_i.
Meta-Analysis Study: Effectiveness of Using GeoGebra on Students' Mathematical Ability Anajihah, Novita Maharani; Sulistyowati, Fitria; Harini, Esti; Agustito, Denik; Nugraheni, Zahra
IndoMath: Indonesia Mathematics Education Vol 8, No 1 (2025): February 2025
Publisher : Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/indomath.v8i1.140

Abstract

The use of GeoGebra in mathematics education positively impacts students' mathematical abilities. This meta-analysis examines its overall effectiveness using 10 studies selected from Google Scholar and Scopus based on inclusion criteria. Data were analyzed using RStudio, revealing an overall effect size of 1.31, indicating a highly positive impact. The study also analyzed variability with four moderator variables: education level, publication type, control class type, and mathematical ability. Results show that GeoGebra significantly enhances mathematical abilities based on publication source and control type but is not influenced by education level. Notably, GeoGebra effectively improves students' conceptual understanding of mathematics, making it a valuable tool for enhancing mathematical skills in education. These findings emphasize the significant role of GeoGebra in fostering students' mathematical comprehension.
The Hilbert space L2 and its self adjoint linear operators in quantum mechanics Agustito, Denik; Setyawan, Dhimas Nur; Sebastian, Rio; Erlangga, Sony Yunior; Trisniawati
COMPTON: Jurnal Ilmiah Pendidikan Fisika Vol 11 No 1 (2024): Compton: Jurnal Ilmiah Pendidikan Fisika
Publisher : Prodi Pendidikan Fisika Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/cjipf.v11i2.18911

Abstract

This paper aims to explain the relationship between the concepts of state, position, and momentum in Quantum Mechanics and the mathematical objects in the study of Functional Analysis. The relationship between functional analysis and quantum mechanics is that if there is the notion of state space, momentum and position, then the relationship with functional analysis is that the state space forms a Hilbert space and momentum and position are seen as operators in the Hilbert space. The method used in this research is a literature review, which conducts a comprehensive review of literature, including textbooks and journals on functional analysis, operator theory, Hilbert spaces, and quantum mechanics. The results and conclusions of this study reveal that the state in Quantum Mechanics forms a class of all sets of square-integrable functions, represented by , which possesses the structure of a complex Hilbert space. Furthermore, Position and momentum in Quantum Mechanics are represented as self-adjoint linear operators on  L2, a complex Hilbert space of square-integrable functions.
Construction of Ordinal Numbers and Arithmetic of Ordinal Numbers Agustito, Denik; Kuncoro, Krida Singgih; Istiqomah, Istiqomah; Hendriyanto, Agus
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 7, No 3 (2023): July
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v7i3.15039

Abstract

The purpose of this paper is to introduce the idea of how to construct transfinite numbers and study transfinite arithmetic. The research method used is a literature review, which involves collecting various sources such as scientific papers and books related to Cantorian set theory, infinity, ordinal or transfinite arithmetic, as well as the connection between infinity and theology. The study also involves constructing the objects of study, namely ordinal numbers such as finite ordinals and transfinite ordinals, and examining their arithmetic properties. The results of this research include the methods of constructing both finite and transfinite ordinal numbers using two generation principles. Both finite and transfinite ordinal numbers are defined as well-orderings that are also transitive sets. Arithmetic of finite ordinal numbers is well-known, but the arithmetic of transfinite ordinal numbers will be introduced in this paper, including addition, multiplication, and exponentiation.
Uji Kelayakan Modul Trigonometri Berbasis Ajaran Tamansiswa Taufiq, Irham; Agustito, Denik
Mosharafa: Jurnal Pendidikan Matematika Vol. 10 No. 2 (2021): Mei
Publisher : Department of Mathematics Education Program IPI Garut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31980/mosharafa.v10i2.661

Abstract

Berdasarkan hasil observasi di Prodi Pendidikan Matematika UST Yogyakarta terdapat beberapa masalah pada proses pembelajaran salah satunya yaitu belum tersedianya modul yang berbasis ajaran Tamansiswa. Tujuan penelitian adalah untuk mengembangkan modul Trigonometri berbasis ajaran Tamansiswa dan mencari tahu tingkat kelayakan modul tersebut. Metode penelitian pengembangan dengan model ADDIE yang melalui 5 tahapan yaitu Analysis, Design, Development, Implementation, dan Evaluation. Pada penelitian ini dibatasi sampai tahap Development. Penelitian dilakukan di Prodi Pendidikan Matematika UST. Subjek penelitian adalah mahasiswa yang mengambil mata kuliah Trigonometri pada Semester Gasal Tahun Akademik 2020/2021 yaitu 50 orang. Teknik pengumpulan data menggunakan angket dan wawancara yaitu angket validasi untuk validator ahli materi dan ahli modul. Teknik analisis data secara deskriptif kualitatif dan kuantitatif. Hasil yang dicapai adalah telah berhasil dikembangkan modul Trigonometri berbasis ajaran Tamansiswa. Modul yang dikembangkan ini telah memenuhi kelayakan sesuai dengan hasil validasi ahli modul dan materi dengan hasil validator sangat baik. Based on the results of observations at the UST Yogyakarta Mathematics Education Study Program, there are several problems in the learning process, one of which is the unavailability of modules based on Tamansiswa teachings. The research objective was to develop a Trigonometry module based on Tamansiswa teachings and to find out the feasibility level of the module. The development research method uses the ADDIE model through 5 stages, namely Analysis, Design, Development, Implementation, and Evaluation. This research is limited to the Development stage. The research was conducted at the UST Mathematics Education Study Program. The research subjects were 50 students taking the Trigonometry course in the Odd Semester of the Academic Year 2020/2021. Data collection techniques used questionnaires and interviews, namely validation questionnaires for material expert validators and module experts. The data analysis technique is descriptive qualitative and quantitative. The result that has been achieved is that the Trigonometry module based on Tamansiswa teachings has been successfully developed. This developed module has met the feasibility by the results of validation by module experts and material with very good validator results.
Persepsi Siswa terhadap Pembelajaran Matematika dan Kaitannya dengan Minat Serta Sikap Belajar Siswa Ade Ayu Dwiguningtyas; Agustito, Denik; Kusumaningrum, Betty; Kuncoro, Krida Singgih
Wacana Akademika: Majalah Ilmiah Kependidikan Vol 9 No 1 (2025): Mei 2025
Publisher : Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/wacanaakademika.v9i1.19814

Abstract

This study aims to describe the perceptions of class X students of Light Vehicle Engineering (TKR) towards mathematics learning and its impact on students' learning interests and attitudes. The study was conducted at one of the vocational schools in Yogyakarta with a qualitative approach and descriptive method. Data were collected using triangulation techniques through observation, open questionnaires, and in-depth interviews. The results showed that most students had negative perceptions of mathematics, which were considered difficult, confusing, and irrelevant to life or work in the automotive field. This perception resulted in low interest and negative attitudes such as indifference, passivity, and lack of enthusiasm. However, there were students who showed positive attitudes when the material presented was considered relevant and easy to understand. These findings indicate a close relationship between students' perceptions, interests, and attitudes towards mathematics learning. Therefore, it is important for educators to design learning strategies that are more contextual, applicable, and in accordance with the world of work in order to form positive perceptions of mathematics.
Landasan berfikir matematis untuk mendapatkan ide tentang eksistensi dari bi-clean and clean hopf modules Agustito, Denik; Purnama, Aditya Yoga; Setyawan, Dhimas Nur
Wiyata Dharma: Jurnal Penelitian dan Evaluasi Pendidikan Vol 12 No 1 (2024)
Publisher : Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/wd.v12i1.17282

Abstract

Tujuan dari tulisan ini adalah mengetahui ide yang muncul dan landasan berfikir matematis yang digunakan saat Puspita dan Wijayanti mendapatkan eksistensi dari modul hopf bi-clean dan modul hopf clean dan metode dari penelitian ini adalah kajian literatur. Kemudian ide tentang komodul clean didefinisikan melalui sifat cleaness dari ring endormofismanya dan landasan berfikir matematisnya adalah analogi yaitu menganalogikan seperti ketika memunculkan ide mengenai modul clean. Dengan memanfaatkan gagasan koaljabar sebagai kasus khusus dari komodul, maka ide tentang koaljabar clean adalah sama sebagai komodul clean. Kemudian ide tentang modul hopf bi-clean didefinisikan melalui sifat cleaness dari struktur dasarnya yaitu sebagai modul clean dan juga sebagai komodul clean, serta landasan berfikir matematisnya adalah generalisasi yaitu dengan cara menggabungkan sifat cleaness dari struktur dasarnya sebagai modul clean dan sebagai komodul clean. Untuk ide dan landasan berfikir matematis dari modul hopf clean mengikuti seperti terbentuknya ide dan landasan berfikir matematis dari modul hopf bi-clean.   Mathematical reasoning about the existence of bi-clean and clean hopf modules   Abstract: The purpose of this paper is to know the ideas that arise and the mathematical reasoning used when Puspita and Wijayanti get the existence of bi-clean hopf modules and clean hopf modules and the method of this research is a literature review.  Then the idea of clean module is defined through the cleanness property of its endomorphism ring and the mathematical reasoning is analogous to the idea of clean module. By utilizing the idea of coalgebra as a special case of commodules, the idea of clean coalgebra is the same as clean commodules. Then the idea of bi-clean Hopf module is defined through the cleaness properties of its basic structure as a clean module and also as a clean commodity, and the basis of mathematical thinking is generalization by combining the cleaness properties of its basic structure as a clean module and as a clean commodity. The idea and mathematical reasoning of the hopf clean module follow the idea and mathematical reasoning of the hopf bi-clean module.
Kesalahan Siswa dalam Menyelesaikan Soal Cerita Sistem Persamaan Linear Dua Variabel Ayu Dwiguningtyas, Ade; Kusumaningrum, Betty; Agustito, Denik; Istiqomah, Istiqomah; Astuti Arigiyati, Tri; Deshinta Ayuningtyas, Annis
Wacana Akademika: Majalah Ilmiah Kependidikan Vol 9 No 2 (2025): November 2025 (In Progress)
Publisher : Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sarjanawiyata Tamansiswa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30738/wacanaakademika.v9i2.19876

Abstract

Students' errors in solving mathematical problems reflect their level of understanding and systematic thinking skills. This qualitative study aims to identify the types of errors and factors causing students' difficulties in solving the System of Linear Equations in Two Variables (SPLDV). The subjects were three eighth-grade junior high school students in Banjarnegara who were selected purposively. Data were obtained through written tests, in-depth interviews, and documentation. The results showed three main error categories: errors in modeling problems, calculations, and incomplete answer structures. The contributing factors include weak conceptual understanding, minimal contextual practice, the habit of solving problems instantly, and a lack of thorough problem interpretation. These findings are expected to provide an empirical basis for teachers and curriculum developers in designing effective learning and emphasizing conceptual understanding, contextual practice, reasoning, and systematic communication in SPLDV material