Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Bulletin of Informatics and Data Science

Implementation of Feature Selection Information Gain in Support Vector Machine Method for Stroke Disease Classification Fitri, Anisa; Afrianty, Iis; Budianita, Elvia; Kurnia Gusti, Siska
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.116

Abstract

Stroke is a disease with a high mortality and disability rate that requires early detection. However, the main challenge in the classification process of this disease is data imbalance and the large number of irrelevant features in the dataset. This study proposes a combination of Support Vector Machine (SVM) method with Information Gain feature selection technique and data balancing using Synthetic Minority Over-sampling Technique (SMOTE) to improve classification accuracy. The dataset used consists of 5,110 data with 10 variables and 1 label. Feature selection was performed with three threshold values (0.04; 0.01; and 0.0005), while SVM classification was tested on three different kernels: Linear, RBF, and Polynomial. Model evaluation was performed using Confusion Matrix and training and test data sharing using k-fold cross validation with k=10. The best results were obtained on the RBF kernel with Cost=100 and Gamma=5 parameters at an Information Gain threshold of 0.0005, with accuracy reaching 90.51%. These results show that the combination of techniques used aims to determine the variables that most affect SVM classification in detecting stroke disease
Implementation of XGBoost Ensemble and Support Vector Machine For Gender Classification of Skull Bones Ramadhani, Astrid; Afrianty, Iis; Budianita, Elvia; Gusti, Siska Kurnia
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.115

Abstract

Sex identification based on skull bones is an important step in forensic anthropology, especially in cases where unidentified human skeletons are found. Conventional methods such as DNA analysis are often used, but have limitations, especially when the bones are damaged, charred or decayed, making the analysis process difficult. This research applies XGBoost ensemble and Support Vector Machine for sex classification on skull bones. The purpose of this research is to handle complex data with many features and unbalanced data using the XGBoost ensemble method and Support Vector Machine (SVM). The data used consisted of 2,524 samples with 82 measurement features. Model performance was evaluated using accuracy, precision, recall, and F1 score metrics. The results showed that the combination of XGBoost and SVM methods, especially with the RBF kernel, was able to achieve accuracy of up to 91.52%. This finding proves that machine learning-based approaches can be an effective and reliable solution in supporting the forensic identification process
Diabetes Classification using Gain Ratio Feature Selection in Support Vector Machine Method Al Rasyid, Nabila; Afrianty, Iis; Budianita, Elvia; Kurnia Gusti, Siska
Bulletin of Informatics and Data Science Vol 4, No 1 (2025): May 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i1.114

Abstract

Diabetes is a major cause of many chronic diseases such as visual impairment, stroke and kidney failure. Early detection especially in groups that have a high risk of developing diabetes needs to be done to prevent problems that have a wide impact. Indonesia is ranked seventh in the world with a prevalence of 10.7% of the total number of people with diabetes. This research aims to determine the attributes in the diabetes dataset that most affect the classification and apply the Support Vector Machine method for diabetes classification. For the determination process, Gain Ratio feature selection technique is applied. The dataset used consists of 768 data with 8 attributes. In this classification process, 3 SVM kernels (Linear, Polynomial, and RBF) are used with three possible data divisions using the ratio (70:30; 80:20; 90:10). Before applying feature selection, there were 8 attributes used and achieved the highest accuracy of 94.81% at a ratio of 80:20 using the RBF kernel with a combination of two parameters namely C = 100, Gamma = 3 and C = 100, Gamma = Scale.  Feature selection parameters in the form of thresholds used include 0.02; 0.03; and 0.05. After applying feature selection, the attribute that produces the highest accuracy uses 6 attributes. The highest accuracy after applying feature selection reached 95.45% at a threshold of 0.02 with a ratio of 80:20 using the RBF kernel with parameters C = 100 and Gamma = Scale. The results showed that there was an increase in accuracy after applying feature selection
Co-Authors Adiya, M. Hasmil Afriyanti, Liza Aftari, Dhea Putri Agnesti, Syafira Al Rasyid, Nabila Alfaiza, Raihan Zia Alghi, Anugerah Febryan Aprima, Muhammad Dzaky Arianto Arianto Arif, Arif Prasetya Ayu Lestari, Fajar Vilbra Azhima, Mohd Baeda, Abd. Gani Baehaqi Bangu, Bangu Burhanuddin, Yuniarti Ekasaputri Butar-Butar, Rio Juan Hendri Dewi Nasien Dinata, Ferdian Arya Elvia Budianita Fadhilah Syafria Fahrozi, Aqshol Al Farkhan, Mochammad Febi Yanto Fitri Insani Fitri, Anisa Gusti, Siska Kurnia Guswanti, Widya Hamid, Fanul Hariansyah, Jul Harni, Yulia Hasibuan, Aldiansyah Pramudia Hasidu, La Ode Abdul Fajar Hasria Hasria, Hasria Hatta, M Ilham Ika Lestari Salim Jasril Jasril Kamaruddin, Anggi Ashari Khair, Nada Tsawaabul Kurniawan, Saifur Yusuf La Aba Lubis, Anggun Tri Utami BR. Ma'rifah, Laila Alfi Mariany Mariany Maryani Maryani Mhd. Kadarman Muhammad Fikry Muhammad Irsyad Naim, Rosani Nasus, Evodius Nazir, Alwis Nazruddin Safaat Nazruddin Safaat H Ode Abdul Fajar Hasidu, La Ode Muhammad Sety, La Pasiolo, Lugas Pratama, Dandi Irwayunda Putri, Atika Putri, Widya Maulida Rahmad Abdillah Ramadhani, Astrid Rasmiati Rasyid Rosmiati Rosmiati Safar, Muhammad Saleh, Ramlah Saputri, Ekawati Saputri, Ekawati Saputri, Sety, La Ode Muhamad Siti Sri Rahayu Suharsono Bantun Surya Agustian Susanti, Risqi Wahyu Suwanto Sanjaya Syahrianti Syahrianti Teluk, Grace Tedy Tukatman Tukatman Tulak, Grace Tedy Vitriani, Yelfi Yuhanah Yuhanah Yulianti, Eva Tri Yuniarti Eka Saputri Yuniarti Eka Saputri B Yusra, Yusra Zabihullah, Fayat Zulastri, Zulastri