Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TELKOMNIKA (Telecommunication Computing Electronics and Control)

Adaptive Traffic Controller Based On Pre-Timed System Freddy Kurniawan; Haruno Sajati; Okto Dinaryanto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 1: March 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i1.2798

Abstract

Adaptive traffic controller systems based on image processing have been developed widely. Nevertheless, in a developing country, the systems often could not be easily applied because all types of vehicle use the same road. Therefore, to overcome the problem, the new concept of the systems is proposed. The systems were developed from a pre-timed traffic controller system that based on AVR microcontroller. By default, the systems use the signal-timing plans to control the vehicle flow. To accommodate the traffic variations, a new method of vehicle detection has been built. The method calculated an intensity histogram standard deviation of the image representing a detection area to determine traffic density of each intersection lane. The systems modified the green-time of each lane based on the traffic density. The method could detect all types of vehicles and work properly in a day and a night time.
Pre-Timed and Coordinated Traffic Controller Systems Based on AVR Microcontroller Freddy Kurniawan; Denny Dermawan; Okto Dinaryanto; Mardiana Irawati
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 4: December 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i4.497

Abstract

The major weaknesses of traffic controllers in Indonesia are unable to accommodate the variety of traffic volume and unable to be coordinated. To solve the problem, a pre-timed and coordinated traffic controller system is build. The system consists of a master and a local controller. Each controller has a database containing signal-timing plans that would be allocated to manage vehicle flows. To synchronize the signal-timing, the master controller sends the synchronization data to the local controller wirelessly and the local controller shifts the end of a cycle by adding or subtracting the green interval of any phases. The transition time for synchronization only takes one to several cycles. The algorithm for controlling the traffic including coordination can be done by an AVR microcontroller. Memory usage of the microcontroller is lower than 10% meanwhile the CPU utilization is no more than 1%, thus the systems could be widely developed.