Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : FORUM STATISTIKA DAN KOMPUTASI

KAJIAN SIMULASI KETAKNORMALAN PENGARUH ACAK DAN BANYAKNYA DERET DATA LONGITUDINAL DALAM PEMODELAN BERSAMA (JOINT MODELING) (Simulation Study of Random Effects Nonnormality and Number of Longitudinal Data Series in Joint Modeling) Indahwati .; Aunuddin .; Khairil Anwar Notodiputro; I Gusti Putu Purnaba
FORUM STATISTIKA DAN KOMPUTASI Vol. 16 No. 2 (2011)
Publisher : FORUM STATISTIKA DAN KOMPUTASI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.827 KB)

Abstract

Joint modeling is intended to model longitudinal response process that affect the other primary response based on  assumption that both  processes induced by the same random effects. One of the assumptions that must be met in joint modeling is  normality  of  random  effects  and  intra-subject  error.  The  simulation  results show that the robustness of parameter estimates of joint model to the assumption of  random  effects  normality  can  be  achieved  by  increasing  the  frequency  of longitudinal observations.  Keywords:  longitudinal data,  joint modeling, robust
PENDEKATAN KEKAR UNTUK MODEL BERSAMA (JOINT MODEL) ATAS DASAR SEBARAN t (A Robust Approach for Joint Model Based on t Distribution) _ Indahwati; _ Aunuddin; Khairil Anwar Notodiputro; I Gusti Putu Purnaba
FORUM STATISTIKA DAN KOMPUTASI Vol. 17 No. 1 (2012)
Publisher : FORUM STATISTIKA DAN KOMPUTASI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (423.398 KB)

Abstract

Existing methods for joint modeling are usually based on normality assumption of random effects and intra subject errors. We propose a joint model based on t distribution of the intra subject errors  to improve robustness of the estimation. Our model consists of two submodels: a mixed linear mixed effects model for the longitudinal data, and a generalized linear model for continuous/binary primary response. The proposed method is evaluated by means of simulation studies as well as application to HIV data. Keywords:  joint modeling, longitudinal data, robust, t distribution