Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Teknologi Informasi dan Ilmu Komputer

Evaluasi Performasi Ruang Warna pada Klasifikasi Diabetic Retinophaty Menggunakan Convolution Neural Network Dewi, Candra; Santoso, Andri; Indriati, Indriati; Dewi, Nadia Artha; Arbawa, Yoke Kusuma
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 3: Juni 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021834459

Abstract

Semakin meningkatnya jumlah penderita diabetes menjadi salah satu faktor penyebab semakin tingginya penderita penyakit diabetic retinophaty. Salah satu citra yang digunakan oleh dokter mata untuk mengidentifikasi diabetic retinophaty adalah foto retina. Dalam penelitian ini dilakukan pengenalan penyakit diabetic retinophaty secara otomatis menggunakan citra fundus retina dan algoritme Convolutional Neural Network (CNN) yang merupakan variasi dari algoritme Deep Learning. Kendala yang ditemukan dalam proses pengenalan adalah warna retina yang cenderung merah kekuningan sehingga ruang warna RGB tidak menghasilkan akurasi yang optimal. Oleh karena itu, dalam penelitian ini dilakukan pengujian pada berbagai ruang warna untuk mendapatkan hasil yang lebih baik. Dari hasil uji coba menggunakan 1000 data pada ruang warna RGB, HSI, YUV dan L*a*b* memberikan hasil yang kurang optimal pada data seimbang dimana akurasi terbaik masih dibawah 50%. Namun pada data tidak seimbang menghasilkan akurasi yang cukup tinggi yaitu 83,53% pada ruang warna YUV dengan pengujian pada data latih dan akurasi 74,40% dengan data uji pada semua ruang warna. AbstractIncreasing the number of people with diabetes is one of the factors causing the high number of people with diabetic retinopathy. One of the images used by ophthalmologists to identify diabetic retinopathy is a retinal photo. In this research, the identification of diabetic retinopathy is done automatically using retinal fundus images and the Convolutional Neural Network (CNN) algorithm, which is a variation of the Deep Learning algorithm. The obstacle found in the recognition process is the color of the retina which tends to be yellowish red so that the RGB color space does not produce optimal accuracy. Therefore, in this research, various color spaces were tested to get better results. From the results of trials using 1000 images data in the color space of RGB, HSI, YUV and L * a * b * give suboptimal results on balanced data where the best accuracy is still below 50%. However, the unbalanced data gives a fairly high accuracy of 83.53% with training data on the YUV color space and 74,40% with testing data on all color spaces.
Analisis Sentimen Kebijakan New Normal dengan Menggunakan Automated Lexicon Senti N-Gram Siregar, Rifki Akbar; Sari, Yuita Arum; Indriati, Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 1: Februari 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2023105006

Abstract

Dalam menghadapi pandemi COVID-19 ini, pemerintah Indonesia mengeluarkan beberapa kebijakan di antaranya adalah Pembatasan Sosial Berskala Besar, dan New normal. Kebijakan New normal ini kemudian menjadi ramai diperbincangkan oleh masyarakat. Analisis sentimen dari opini yang beredar terkait isu tersebut dapat dilakukan sehingga pemerintah dapat mengevaluasi kebijakan tersebut. Dalam penelitian ini diusulkan menggunakan Lexicon Senti-N-Gram untuk analisis sentimen dengan tujuan untuk mengetahui pengaruh Lexicon Senti-N-Gram pada analisis sentimen Bahasa Indonesia. Adapun penelitian ini menggunakan data sebanyak 350 data tweet yang terbagi menjadi 229 tweet kelas positif dan 121 tweet kelas negatif. Hasil evaluasi yang diperoleh dengan menggunakan data dengan stemming lebih tinggi dibandingkan dengan data tanpa stemming. Hasil pengujian kinerja sistem terhadap lexicon Senti-N-Gram mendapatkan nilai accuracy sebesar 63,42%, precision sebesar 77%, recall sebesar 62,88%, dan f-measure sebesar 69,23% dengan nilai rata-rata kappa antar Annotator sebesar 0.5395 untuk data yang melalui proses stemming.  Berdasarkan hasil pengujian yang telah diperoleh dapat disimpulkan bahwa proses stemming serta proses translasi kata satu per satu yang dilakukan dapat memengaruhi kata berdasarkan konteksnya. AbstractIn dealing with the COVID-19 pandemic, the Indonesian government has issued several policies, including Large-Scale Social Restrictions and New normal. The New normal policy then became widely discussed by the public. Sentiment analysis of the opinions circulating on this issue can be carried out so that the government can evaluate the policy. In this study, it is proposed to use the Lexicon Senti-N-Gram for sentiment analysis in order to determine the effect of the Lexicon Senti-N-Gram on Indonesian sentiment analysis. The research used 350 tweets, which were divided into 229 positive class tweets and 121 negative class tweets. The evaluation results obtained using stemming data were higher than those without stemming. The results of the system performance test of the Lexicon Senti-N-Gram obtained an accuracy value of 63.42%, 77% precision, 62.88% recall, and 69.23% f-measure with an average kappa value between Annotators of 0.5395 for data that goes through the stemming process. Based on the test results that have been obtained, it can be concluded that the stemming process and the process of translating words one by one can affect words based on their context.
Analisis Sentimen terhadap Kebijakan Kuliah Daring Selama Pandemi Menggunakan Pendekatan Lexicon Based Features dan Support Vector Machine Oktaviana, Natasya Eldha; Sari, Yuita Arum; Indriati, Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 2: April 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022925625

Abstract

Adanya virus baru yaitu COVID-19 atau SARS-CoV-2 yang berasal dari Wuhan, China pada awal tahun 2020 telah menggemparkan seluruh warga dunia salah satunya Indonesia dan memiliki tingkat penularan yang tinggi. Sehingga untuk meminimalisir penyebaran COVID-19, pemerintah Indonesia menetapkan salah satu kebijakan dalam dunia pendidikan yaitu pembelajaran/perkuliah online. Kebijakan tersebut mengakibatkan seluruh penyebaran informasi berubah menjadi online dan memberikan dampak yang luas bagi keberlanjutan pendidikan di Indonesia. Hal tersebut menimbulkan kontroversi pada kalangan masyarakat dan banyak yang akhirnya beropini pada media sosial, salah satunya Twitter. Analisis sentimen berguna untuk mengetahui ketepatan komputasi sistem dalam mengenali pembicaraan pada Twitter mengenai kebijakan pembelajaran online cenderung bersentimen negatif atau positif dengan menggunakan metode Support Vector Machine dan Lexicon Based Features. Penggunaan Lexicon Based Features berpengaruh terhadap objek penelitian yang menghasilkan nilai accuracy 0,6, nilai precision 0,56, nilai recall 0,75, dan fmeasure 0,64 dengan parameter optimal dalam mencapai konvergensi yaitu ???? (Lambda) = 0,7, nilai parameter ???? (gamma) = 0,0001, nilai parameter ???? (Kompleksitas) = 0,0001, iterasi = 50, dan ???? (Epsilon) = 0,00000001. Hal tersebut menunjukkan bahwa metode yang digunakan pada penelitian ini dapat mengenali pembicaraan data komentar pada Twitter karena dibuktikan dengan nilai accuracy yang cukup tinggi.AbstractThe existence of a new virus, namely COVID-19 or SARS-CoV-2, that come from Wuhan, China, in early 2020, has shocked all citizens of the world, including Indonesia, and has a high transmission rate. So to minimize the spread of COVID-19, the Indonesian government has set one policy in online learning/lectures. This policy resulted in all information dissemination being online and had a broad impact on education in Indonesia. This policy caused controversy among the public, and many ended up giving opinions on social media, one of which was Twitter. Sentiment analysis is useful for determining the timeliness of system computing in discussions on Twitter regarding online learning policies that tend to have negative or positive sentiments using the Support Vector Machine and Lexicon Based Features methods. The use of Lexicon Based Features affects the object of research which produces an accuracy value of 0.6, a precision value of 0.56, a recall value of 0.75, and a size of 0.64 with the optimal parameter in achieving convergence, namely (Lambda) = 0.7, the parameter value (gamma) = 0.0001, the parameter value (Complexity) = 0.0001, iterations = 50, and (Epsilon) = 0.00000001. This evaluation value shows that the method used in this study can recognize the conversation of comment data on Twitter because a fairly high accuracy value evidences it.
Klasifikasi Ulasan Palsu Menggunakan Borderline Over Sampling (BOS) dan Support Vector Machine (SVM) (Studi Kasus : Ulasan Tempat Makan) Awalina, Aisyah; Bachtiar, Fitra Abdurrachman; Indriati, Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 2: April 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022925692

Abstract

Kemudahan memperoleh informasi saat ini telah banyak membantu manusia, salah satu mencari ulasan untuk tempat makan baru. Pencarian ulasan ini dipicu karena pengunjung tidak mengetahui layanan dari tempat tersebut. Ulasan juga dapat menguntungkan penjual, karena mereka mengetahui pengalaman yang dimiliki pengunjungnya. Oleh karena itu, ulasan palsu dimanfaatkan banyak orang untuk membuat ulasan palsu. Ulasan palsu bisa secara efektif dibedakan menggunakan machine learning. Namun, banyak dari dataset ulasan palsu ini tidak seimbang (imbalanced dataset) sehingga dapat mempengaruhi hasil klasifikasi. Oleh karena itu, penelitian ini menggunakan metode BOS untuk mengatasi tidak seimbangnya data dan melakukan klasifikasi dengan metode SVM. Adapun tahapan dari penelitian yaitu preprocessing, lalu pembobotan kata dengan TF-IDF dan fitur sentimen menggunakan lexicon-based features, dilanjutkan proses menyeimbangkan dataset dengan BOS, setelah itu proses klasifikasi oleh SVM. Adapun langkah dalam pengujian BOS dan SVM yaitu pembagian data latih dan uji dengan 80%:20%, setelah itu pencarian parameter terbaik pada data latih dengan 5-fold cross validation, dan dievaluasi dengan data uji. Adapun nilai parameter terbaik pada BOS dan SVM yaitu N dengan nilai 400% dimana hasil evaluasi akurasi dengan nilai 78,6%; precision dengan nilai 19,7%; recall dengan nilai 17,1%; f-measure dengan nilai 14,4%; dan g-mean dengan nilai 32%. Oleh karena itu, penggunaan BOS dapat meningkatkan hasil evaluasi dari terhadap klasifikasi ulasan palsu.AbstractThe convenience of obtaining information nowadays has helped many people such as looking for reviews for new places to eat. The search for reviews was triggered because visitors were not aware of the services of the place. Reviews can also benefit sellers, because they know the experience their visitors have had. Therefore, many people abuse reviews to create spam reviews. Spam reviews can be effectively resolved using machine learning. However, many of these spam review datasets are imbalanced and thus may affect classification results. In this study, BOS algorithm was used to overcome data imbalances, and SVM algorithm for the classification of spam reviews. The stages of the research are preprocessing, then weighting words with TF-IDF and sentiment features using lexicon-based features, followed by the process of balancing the dataset with BOS, and classification process with SVM. Step in testing BOS and SVM are split data of training and test data with 80%:20%, after that the search for the best parameters in the training data with 5-fold cross-validation, and evaluated with test data. The best parameter values for BOS and SVM were N with a value of 400% where the results of the accuracy evaluation were 78.6%; precision with a value of 19.7%; recall with a value of 17.1%; f-measure with a value of 14.4%; and g-mean with a value of 32%. Therefore, use of BOS can improve the evaluation results from the classification of spam reviews.
Pengelompokan Hasil Pencarian Skripsi Berbahasa Indonesia Menggunakan Metode DBSCAN dengan Pembobotan BM25 Satria, Rangga Adi; Indriati, Indriati; Sutrisno, Sutrisno
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106899

Abstract

Skripsi merupakan tugas akhir yang disusun oleh mahasiswa sebagai persyaratan untuk memperoleh gelar sarjana. Mesin pencari untuk mempermudah pencarian dokumen skripsi yang disimpan pada perpustakaan maupun penyimpanan digital umumnya menggunakan metode sederhana dengan mengembalikan dokumen yang mengandung potongan kata atau identik dengan kata kunci, sehingga dokumen yang diperoleh kurang relevan. Hasil pencarian dapat dikelompokan sehingga dokumen tersaji dengan lebih terperinci dan memudahkan pencarian lebih lanjut. Guna mengelompokan hasil pencarian skripsi berbahasa Indonesia, dengan menggunakan judul dan abstrak skripsi, digunakan pembobotan kata BM25 dan pengelompokan DBSCAN, metode pengelompokan yang mempertimbangkan kepadatan titik sampel dokumen. Pengujian dilakukan dengan mengukur hasil pengelompokan menggunakan rata-rata silhouette coefficient terhadap parameter epsilon dan MinPts pada metode DBSCAN, serta k1 dan b pada pembobotan BM25 dengan 4 skenario yang berbeda. Hasil pengujian menunjukan bahwa parameter k1 dan b pada pembobotan BM25 cukup mempengaruhi kualitas pengelompokan dengan metode DBSCAN. Hasil rata – rata silhouette coefficient terbaik untuk masing masing skenario secara berurutan adalah 0.722, 0.762, 0.945 dan 0.907 dengan parameter terbaik berupa k1=1.8, b=0.5, epsilon=0.1 dan MinPts=5 pada skenario pertama. k1=1.9, b=0.5, epsilon=0.1 dan MinPts=5 pada skenario kedua. k1=1.4, b=0.55, epsilon=0.1 dan MinPts=5 pada skenario ketiga dan k1=1.8, b=0.65, epsilon=0.1 dan MinPts=5 pada skenario keempat. AbstractThesis is a final project that must be completed by students as requirement to obtain a bachelor degree. Search engines used for searching thesis documents stored in libraries or digital storage generally use a simple method by returning documents that contain a snippet of the word or are identical to the keywords, so the obtained documents become less relevant. Search results can be clustered with the purpose of presenting the documents in more detailed way and to ease further searches. In order to cluster the search results of Indonesian language thesis, using the title and abstract of the thesis, BM25 word weighting and DBSCAN clustering were used, a clustering method that considers the document sample density point. The test performed by measuring the clustering results using the average silhouette coefficient on the epsilon and MinPts parameters in the DBSCAN method, as well as k1 and b in the BM25 weighting on 4 different scenarios. The test results show that k1 and b parameters on BM25 weighting is quite affecting the quality of the clustering results using DBSCAN method. The best average silhouette coefficient results for each scenario sequentially are 0.722, 0.762, 0.945 and 0.907 by using the best parameters in the form of k1=1.8, b=0.5, epsilon=0.1 and MinPts=5 in the first scenario. k1=1.9, b=0.5, epsilon=0.1 and MinPts=5 in the second scenario. k1=1.4, b=0.55, epsilon=0.1 and MinPts=5 in the third scenario and k1=1.8, b=0.65, epsilon=0.1 and MinPts=5 in the fourth scenario