Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : The Indonesian Journal of Computer Science

Analisa Performansi Komunikasi Lora (Long Range) pada Sistem Monitoring Buoy di Laut Sa'adah, Nihayatus; Aries Pratiarso; Faridatun Nadziroh; Nailul Muna; Karimatun Nisa’; I Gede Puja Astawa; Tri Budi Santoso; Sultan Syahputra Yulianto
The Indonesian Journal of Computer Science Vol. 13 No. 6 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i6.4462

Abstract

LoRa (Long Range) is a leading technology in Low Power Wide Area Networks (LPWAN), ideal for Internet of Things (IoT) applications. Designed for long-range communication with low power consumption, LoRa is used in monitoring navigation buoys, critical aids in marine waters. An IoT-based monitoring system is essential for maintaining buoy functionality. LoRaWAN, with a range of 15 kilometers under line of sight (LoS) conditions, is employed for IoT connectivity in this system. In this study, 915 MHz LoRa communication was used in buoy monitoring, with performance evaluated based on signal-to-noise ratio (SNR) and received signal strength indicator (RSSI). Measurements showed an average RSSI greater than -120 dB and an average SNR greater than -20 dB, indicating LoRa's suitability as a communication network for buoy monitoring systems.
Perancangan Sistem Penyemprotan Gulma Otomatis Berdasarkan Deteksi Citra Gulma Berbasis IoT Nailul Muna; Nanang Syahroni; Karimatun Nisa; Natty Novia Ramadhani; Dimas Ade Firmanda
The Indonesian Journal of Computer Science Vol. 13 No. 6 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i6.4550

Abstract

Effective weed management is crucial in agriculture to improve crop yields and reduce the environmental impact of pesticide use. This research proposes the implementation of an Internet of Things (IoT)-based weed detection system for real-time weed spraying. The system integrates image detection technology with IoT to automatically monitor weeds. Cameras connected through IoT capture images of agricultural areas and perform image processing using image processing. Once the weeds are detected, the system controls a pesticide sprayer with precision, targeting the areas affected by weeds, utilizing ultrasonic and water flow sensors to monitor the pesticide and water volumes used for spraying. The results of the system can be monitored through an application. Testing results show that the pump is capable of spraying based on the weed detection outcome, the system’s End-to-End Process time measured at an average of 33.6 seconds when weeds are detected and 30 seconds when no weeds are detected.
Implementasi Algoritma EfficientDet-D0 dan SSD-MobileNet-V2 FPNLite untuk Sistem Deteksi Gulma Nailul Muna; Norma Ningsih; Nanang Syahroni; Abd. Malik Syamlan; Vina Larasati; Karimatun Nisa’
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3723

Abstract

Gulma merupakan tumbuhan yang tumbuh disekitar tanaman dan dapat merugikan tanaman yang dibudidayakan. Pengendalian gulma menjadi faktor penting yang dapat mempengaruhi produktivitas tanaman. Pengendalian gulma dapat ditanggulangi dengan melakukan penyemprotan pestisida pada gulma. Cakupan penyemprotan yang tepat sasaran dapat dilakukan untuk mencegah timbulnya masalah limbah. Sistem pertanian cerdas sangat dibutuhkan untuk mengatasi permasalahan tersebut, seperti deteksi gulma yang memanfaatkan teknik deep learning. Pada penelitian ini membangun sistem deteksi gulma yamg mengimplementasikan EfficientDet-D0 dan SSD-MobileNet-V2 FPNLite. Dataset yang digunakan berjumlah 941 citra gulma yang kemudian dilakukan pelabelan untuk data latih dan data uji. Sistem menunjukkan kinerja yang baik untuk mendeteksi gulma dengan accuracy berturut-turut dari EfficientDet-D0 dan SSD-MobileNet-V2 FPNLite mencapai 95,69% dan 99,138%. Hasil tersebut menunjukkan EfficientDet-D0 dan SSD-MobileNet-V2 FPNLite dapat mendukung dalam pengendalian gulma.