Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science and Technology Indonesia

Structure and Dynamics of Curcumin Encapsulated Lecithin Micelles: A Molecular Dynamics Simulation Study Lukman Hakim; Diah Mardiana; Urnik Rokhiyah; Maria Lucia Ardhani Dwi Lestari; Zubaidah Ningsih
Science and Technology Indonesia Vol. 6 No. 3 (2021): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2024.157 KB) | DOI: 10.26554/sti.2021.6.3.113-120

Abstract

Curcumin is a natural product with potential pharmaceutical applications that can be augmented by drug delivery technology such as nano emulsion. Our study focuses on microscopic structural and dynamics response of curcumin encapsulation in micellar system with lecithin as a natural surfactant under variations of composition and temperature using molecular dynamics (MD) simulations. The results highlight the self-assembly of lecithin micelle, with curcumin encapsulated inside, from initial random configurations in the absence of external field. The variation of composition shows that lecithin can aggregate into spherical and rod-like micelle with the second critical micelle concentration lies between 0.17-0.22 mol dm−3. The radial local density centering at the micelle center of mass shows that the effective radius of micelle is indeed defined by the hydrophilic groups of lecithin molecule and theencapsulated curcumin molecules are positioned closer to these hydrophilic groups than the innermost part of the micelle. The spherical micelle is shown to be thermally stable within the temperature range of 277-310 K without a perceivable change in the spherical eccentricity. The dynamics of micelle are enhanced by the temperature, but it is shown to be insensitive to the variation of lecithin-curcumin composition within the studied range. Simulation results are in agreement with the pattern obtained from experimental results based on particle size, polydispersity index, and encapsulation efficiency.
Okra Mucilage Extract as A Co-Surfactant Increased the Curcumin Nanoemulsion Stability and Encapsulation Efficiency El Fajriyah Aulia Putri; Ellya Indahyanti; Diah Mardiana; Maria Lucia A.D Lestari; Zubaidah Ningsih
Science and Technology Indonesia Vol. 8 No. 3 (2023): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2023.8.3.509-515

Abstract

Curcumin has various bio-functional properties; however, curcumin poor bioavailability reduces its efficacy. Nanoemulsion delivery system is an alternative method improving curcumin bioavailability in which surfactant and oil used, play an important role in determining nanoemulsion properties. Several studies on curcumin nanoemulsions apply synthetic surfactants which can be harmful if they are added excessively. This study aims to use a natural emulsifying agent, namely okra mucilage extract (OME), and determine its effectiveness as co surfactant. OME is safe to use as an emulsifying agent because it is natural, harmless, safe, biodegradable and eco-friendly. Liquid-liquid and microwave extraction methods were used to obtain OME which was further identified using Fourier Transfer Infrared Spectroscopy (FTIR). Meanwhile, sonication method was used to produce curcumin nano-emulsion (CurN). The particle size and polydispersity index of curcumin nano-emulsion were measured using Particle Size Analyzer (PSA) with Dynamic Light Scattering (DLS) technique, while the morphology of the nanoemulsion was observed using a Digital Imaging Microscope and Confocal Laser Scanning Microscope (CLSM). The results showed that the addition of 0.0160 g OME at a ratio of 1:5 (OME: Tween 80) in the preparation of 5 mL of CurN was able to reduce the particle size and polydispersity index from 740.80 ± 9.70 nm to 289.20 ± 2.23 and 0.340 ± 0.005 to 0.165 ± 0.008 respectively. OME increased the encapsulation efficiency from 77.93 ± 6.59% to 87.17 ± 1.12% which was confirmed by the augmentation of the fluorescence intensity of curcumin from 192.82 to 388.55. The addition of OME also maintained the stability of the CurN up to 14 days of storage at 4°C.