Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Journal of Information System,Graphics, Hospitality and Technology

Multilabel Text Classification Menggunakan SVM dan Doc2Vec Classification Pada Dokumen Berita Bahasa Indonesia Kristian Indradiarta Gunawan; Joan Santoso
Journal of Information System,Graphics, Hospitality and Technology Vol. 3 No. 01 (2021): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v3i01.126

Abstract

Seiring dengan berkembangnya informasi yang ada di sekitar dengan pesat, maka jenis informasi yang ada pun menjadi sangat bervariasi dan sangat banyak jumlahnya, dan akan semakin terus bertambah. Dengan kondisi tersebut, kita akan mengalami kesulitan untuk mengenali jenis dari informasi tersebut satu persatu. Oleh karena itu dengan adanya proses klasifikasi teks dan dokumen sangatlah membantu untuk memilah dan mengenali informasi-informasi apa saja yang ada, baik informasi yang lama maupun informasi yang baru dan belum pernah ditemui sebelumnya. Bertujuan untuk dapat mengidentifikasi dan mengklasifikasikan dokumen-dokumen berita dalam bahasa Indonesia ke dalam beberapa kategori sekaligus, maka dibuatlah sebuah penelitian berupa sistem untuk menangani klasifikasi dokumen teks dalam bahasa Indonesia. Sistem tersebut akan memproses berita-berita yang diberikan, dan kemudian akan memberikan 2 kategori yang paling mendekati terhadap isi dari berita tersebut. Sistem dibuat dengan menggunakan Python, memanfaatkan Doc2Vec untuk mengambil fitur dataset, dan SVM untuk melakukan klasifikasi terhadap banyak kelas. Dataset yang digunakan adalah kumpulan dokumen berupa berita-berita yang diperoleh dari CNN Indonesia tahun 2016-2017, dan terbagi dalam 5 kategori berita utama, yaitu: Politik, Ekonomi, Teknologi, Olahraga, dan Hiburan. Dikarenakan sedikitnya literatur untuk klasifikasi text dalam bahasa Indonesia, maka pada penelitian ini hanya menargetkan akurasi sebesar 70% saja. Namun dari hasil ujicoba, akurasi yang diperoleh melebihi 90%. Hasil prediksi untuk kelas dokumen pun memiliki tingkat keberhasilan yang tinggi. Dengan penggunaan dataset dan penanganan preprocessing yang tepat untuk dokumen bahasa Indonesia, maka hasil yang dicapai bisa lebih bagus dan akurat.
Klasifikasi Ketrampilan Kognitif Siswa dengan Menggunakan Metode Learning Vector Quantization dengan Bantuan Game Budi Irawan; Joan Santoso
Journal of Information System,Graphics, Hospitality and Technology Vol. 3 No. 02 (2021): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v3i02.132

Abstract

Untuk menilai tingkat kognitif seorang siswa sangatlah sulit banyak indikator yang mempengaruhi yang menyebabkan hasilnya tidak akurat. Dengan metode serius game ini akan diketahui tingkat kognitif seorang siswa yang akan diketahui penguasaan pembelajaran yang akan dicapai. Dalam serius game ini penguasaan pembelajaran merupakan inti dari proses belajar mengajar. Dalam tingkat kognitif ini perlu diklasifikasikan dengan menggunakan metode Cognitif Skill Game (CSG). Siswa sebagai pemain akan dipantau bagaimana berinteraksi dengan permainan untuk meningkatkan konsep permainan kognitif ini. Pada CSG ini menggunakan metode Learning Vector Quantization (LVQ) yang berfungsi untuk mengoptimalkan input klasifikasi ketrampilan kognitif pemain. Guru sebagai data training digunakan untuk mengobservasi LVQ. Guru mempunyai pengalaman yang banyak dan mempunyai banyak sertifikasi atau pelatihan dianggap cocok sebagai data training. Pengambilan data Guru menggunakan metode observasi kuesioner. Siswa jurusan Teknik Komputer dan Jaringan (TKJ) SMK adalah populasi klasifikasi ketrampilan kognitif saat menjalankan permainan dalam penelitian. Sebagian kecil pemain CSG masuk dalam kategori keterampilan kognitif hati-hati, beberapa masuk dalam kategori ahli, dan sebagian besar masuk dalam dalam kategori coba-coba. Hasil dari permainan CSG ini adalah pemain memiliki kemampuan ketrampilan kognitif masih rendah. High trial and error 75%, high expert 6%, dan high careful 19%. Dalam penelitian ini juga dilakukan validasi pengukuran secara berulang-ulang untuk mengetahui keakuratan klasifikasi CSG.
Ekstraksi Relasi Antar Entitas di Bahasa Indonesia Menggunakan Neural Network Ananta Tio Putra; Eunike Kardinata; Hartarto Junaedi; Francisca Chandra; Joan Santoso
Journal of Information System,Graphics, Hospitality and Technology Vol. 3 No. 02 (2021): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v3i02.156

Abstract

Dengan perkembangan zaman yang begitu pesat, berdampak pada perkembangan data pula. Salah satu bentuk data yang paling banyak saat ini berupa data tekstual seperti artikel sederhana maupun dokumen lain yang terdapat di internet. Agar data tekstual tersebut dapat dimengerti dan dimanfaatkan dengan baik oleh manusia, maka perlu di proses dan disederhanakan agar menjadi informasi yang ringkas dan jelas. Oleh karena itu, semakin berkembang pula penelitian dalam bidang Information Extraction (IE) dan salah satu contoh penelitian di IE adalah Relation Extraction (RE). Penelitian RE sudah banyak dilakukan terutama pada Bahasa Inggris dimana resourcenya sudah termasuk banyak. Metode yang digunakan pun bermacam-macam seperti kernel, tree kernel, support vector machine, long short-term memory, convulution recurrent neural network, dan lain sebagainya. Pada penelitian kali ini adalah penelitian RE pada Bahasa Indonesia dengan menggunakan metode convulution recurrent neural network yang sudah dipergunakan untuk RE Bahasa Inggris. Dataset yang digunakan pada penelitian ini adalah dataset Bahasa Indonesia yang berasal dari file xml wikipedia. File xml wikipedia ini kemudian diproses sehingga menghasilkan dataset seperti yang digunakan pada CRNN dalam Bahasa inggris yaitu dalam format SemEval-2 Task 8. Uji coba dilakukan dengan berbagai macam perbandingan data training dan testing yaitu 80:20, 70:30, dan 60:40. Selain itu, parameter pooling untuk CRNN yang digunakan ada dua macam yaitu ‘att’ dan ‘max’. Dari uji coba yang dilakukan, hasil yang didapatkan adalah bervariasi mulai dari mendekati maupun lebih baik bila dibandingkan dengan CRNN dengan menggunakan dataset Bahasa inggris sehingga dapat disimpulkan bahwa dengan CRNN ini bisa digunakan untuk proses RE pada Bahasa Indonesia apabila dataset yang digunakan sesuai dengan penelitian sebelumnya.
Pengenalan Lirik Lagu Otomatis Pada Video Lagu Indonesia Menggunakan Hidden Markov Model Yang Dilengkapi Music Removal Luhfita Tirta; Joan Santoso; Endang Setyati
Journal of Information System,Graphics, Hospitality and Technology Vol. 4 No. 2 (2022): Journal of Information System, Graphics, Hospitality and Technology
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37823/insight.v4i2.225

Abstract

Video sangat penting untuk membuat informasi berupa suara dalam video agar dapat dipahami oleh semua kalangan masyarakat, dan orang-orang yang memiliki masalah pendengaran yaitu dengan cara paling alami terletak pada penggunaan subtitle. Oleh karena itu, peneliti membuat pengenalan lirik lagu otomatis pada video lagu Indonesia menggunakan Hidden Markov Model yang dilengkapi music removal. Dalam pengenalan suara lebih akurat dilakukan dengan menggunakan model HMM yang dilengkapi oleh MFCC (kata yang cocok 81% dan WER 19%) dibandingkan dengan model LDA + MFCC (kata yang cocok 71% dan WER 29%) dan DWT + MFCC (kata yang cocok 61% dan WER 39%). Jumlah kata dan sample suara pada library Bahasa Indonesia yang digunakan cukup sangat mempengaruhi MFCC dan CMU Sphinx-4, Nada pada inputan lagu yang akan diproses CMU Sphinx-4 juga sangat berpengaruh pada tingkat keberhasilan, dikarenakan CMU Sphinx-4 sangat sensitif dengan nada yang terlalu tinggi dan noise yang ada pada inputan lagu tersebut sehingga peneliti menambahkan fitur ekstraksi pada suara yaitu menggunakan MFCC. Dalam hal ini menggunakan dataset kecil terlebih dahulu untuk memastikan metode Hidden Markov Model yang dilengkapi MFCC dan CMU Sphinx-4 dapat berjalan dengan baik, Dari penelitian beberapa peneliti sebelumnya, maka hasil akhir yang diperoleh dengan menggunakan metode HMM yang dilengkapi oleh MFCC dan CMU Sphinx-4 dalam penelitian ini mendapatkan hasil akurasi training 78% dan testing 81% kecocokan kata pada video lagu.
Co-Authors Aditya Dwi Aryanto Adriel Ferdianto Agung Dewa Bagus Soetiono Ahmad Syaifuddin Ali Djamhuri Ananta Tio Putra Andik Jatmiko Anita Guterres Bayu Anggara Putra Budi Irawan Chandra, Francisca H. Christian Nathaniel Purwanto Devi Dwi Purwanto Dewi, Nindian Puspa Dipa, Sasra Edwin Pramana Eka Rahayu Setyaningsih Eko Mulyanto Yuniarno Elizabeth Shirley, Stephanie Endang Setyati Ernest Lim Esther Irawati S. Esther Irawati Setiawan Esther Irawati Setiawan Eunike Kardinata F.X. Ferdinandus Fachrul Kurniawan Febriantoro, Erfan Francisca Chandra Fujisawa, Kimiya Gunawan Gunawan Gunawan Gunawan Gunawan Gunawan Hans Juwiantho Hans Keven Budi Prakoso Hartarto Junaedi Hendrawan Armanto Heppi Siswanto Herman Budianto Imron, Syaiful Indra Maryati Jatmiko, Andik Kristian Indradiarta Gunawan Kristina, Natalia Kurniawan S, Putu Widiarsa Langgeng, Yudo Sembodo Hastoro Leonel Hernandez Luhfita Tirta Lukman Zaman Machfudin, Mohammad Farid Mauridhi Hery Purnomo Miftah Farid Mochamad Hariadi Muhammad Amfahtori Wijarnoko Mustaqin, Farhan Faisal Zainul Nagari, Widean Nikko Riestian Putra Wardoyo Nindian Puspa Dewi Ong, Hansel Santoso Patrick Sutanto Reddy Alexandro Harianto Ricky Sutanto Rossy P. C. Rully Widiastutik Samuel Budi Wardhana Kusuma Saputra, Daniel Gamaliel Setya Ardhi Soetiono, Agung Dewa Bagus Stefanie Hilda Kusumahadi Stella Vania Surya Sumpeno Syabith Umar Ahdan Syaiful Huda Syaiful Imron Tjendika, Patrick Tjwanda Putera Gunawan Tri Septianto Tuesday saka gustaf Ubaidi Ubaidi Ubaidi, Ubaidi Yosi Kristian