Claim Missing Document
Check
Articles

Penerapan Distribusi Poisson-Lindley pada Data Jumlah Gol Hasil Pertandingan Liga 1 Indonesia Tahun 2004 Fakhriel Muhammad Hafizh; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 2 No. 2 (2022): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (141.941 KB) | DOI: 10.29313/bcss.v2i2.3332

Abstract

Abstract. Liga 1 Indonesia is the highest caste football competition between clubs in Indonesia. First held in 1994, Liga 1 is a merger of the previous 2 major competitions, namely the union (1931-1994) and Galatama 1979-1994). The aim is to improve the quality of Indonesian football and mark the phased league system of Indonesian football at a competitive level. There have been many studies conducted by researchers in various countries to process data on the number of goals scored by football matches for home teams and away teams from a football league. Ghitany and Al-Mutairi (2009) discuss the Poisson-Lindley distribution, a distribution for data from discrete random variable. In this Journal, we will discuss the application of the Poisson-Lindley distribution to the data on the number of goals of home teams and away teams resulting from the highest caste Indonesian football league matches for 2004 and to find out whether the Poisson-Lindley distribution is a suitable distribution of opportunities to model the case of the number of goals data. The maximum likelihood estimation is used to assess the parameters on such distributions. The distribution match test used is the Chi-squared test. As research material, secondary data from recording results will be used obtained from several sources, namely rsssf.com, id.soccerway.com, Wikipedia.com and presented into data on the results of the 2004 Indonesian Liga 1 football match. Based on the results of the application to the data on the number of goals resulting from the Indonesian Liga 1 football match in 2004, the Poisson Lindley distribution is suitable for modeling the case of away team goal number data and is not suitable for modeling the case of home team goal number data. Abstrak. Liga 1 Indonesia adalah kompetisi sepak bola kasta tertinggi antar klub di Indonesia. Terselenggara pertama kali pada tahun 1994, Liga 1 merupakan penggabungan 2 kompetisi besar sebelumnya yaitu perserikatan (1931-1994) dan Galatama 1979-1994). Tujuannya untuk meningkatkan kualitas sepak bola Indonesia dan menandai sistem liga bertahap sepak bola Indonesia di tingkat kompetitif. Sudah banyak penelitian yang dilakukan oleh para peneliti di berbagai negara untuk mengolah data jumlah gol hasil pertandingan sepak bola untuk tim kandang dan tim tandang dari suatu liga sepak bola. Ghitany dan Al-Mutairi (2009) membahas distribusi Poisson-Lindley, suatu distribusi untuk data dari peubah acak diskrit. Dalam Jurnal ini akan dibahas mengenai penerapan distribusi Poisson-Lindley pada data jumlah gol tim kandang dan tim tandang hasil pertandingan Liga sepak bola Indonesia kasta tertinggi untuk tahun 2004 dan untuk mengetahui apakah distribusi Poisson-Lindley merupakan distribusi peluang yang cocok untuk memodelkan kasus data jumlah gol tersebut. Metode penaksir kemungkinan maksimum digunakan untuk menaksir parameter pada distribusi tersebut. Uji kecocokan distribusi yang digunakan adalah uji Chi-kuadrat. Sebagai bahan penelitian akan digunakan data sekunder hasil pencatatan yang diperoleh dari beberapa sumber yaitu rsssf.com, id.soccerway.com, Wikipedia.com dan disajikan menjadi data hasil pertandingan sepakbola Liga 1 Indonesia tahun 2004. Berdasarkan hasil penerapan pada data jumlah gol hasil pertandingan sepakbola Liga 1 Indonesia tahun 2004, distribusi Poisson Lindley cocok untuk memodelkan kasus data jumlah gol tim tandang dan tidak cocok untuk memodelkan kasus data jumlah gol tim kandang.
Penerapan Distribusi Log-Gamma pada Data Besar Klaim Asuransi Kendaraan Bermotor Safira Pratiwi; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 2 No. 2 (2022): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (136.445 KB) | DOI: 10.29313/bcss.v2i2.4463

Abstract

Abstract. Insurance is the anticipation of the insurer to minimize risk by transferring the risk to another party or commonly referred to as the insured. Some of the terms in insurance, one of which is, the occurrence of a claim when the insured experiences a risk, the insurer will compensate for the loss in accordance with the agreement contained in the insurance policy. In several previous studies, there are distributions that are applied to big data claims such as the Pareto distribution and the GPD distribution. In this study will use the log-gamma distribution. The log-gamma distribution belongs to a continuous distribution with two parameters . The data used is big data on claims at the insurance company PT ABC in 2015 regarding Partial Loss data for motor vehicle insurance for all categories 7. Based on the results of the application of the log-gamma distribution, it is concluded that the big data for motor vehicle insurance claims category 7 in all regions comes from a population with a log-gamma distribution. Abstrak. Asuransi merupakan antisipasi penanggung untuk meminimalisir risiko dengan memindahkan risiko kepada pihak lain atau biasa dikatakan sebagai tertanggung. Beberapa istilah dalam asuransi salah satunya yaitu klaim, terjadinya klaim ketika tertanggung mengalami risiko maka penanggung akan mengganti kerugian sesuai dengan kesepakatan yang terdapat dalam polis (perjanjian tertulis) asuransi. Dalam beberapa penlitian terdahulu, terdapat distribusi-distribusi yang diterapkan pada data besar klaim seperti, distribusi Pareto dan distribusi GPD. Pada penelitian ini akan menggunakan distribusi log-gamma. Distribusi log-gamma termasuk ke dalam distribusi kontinu dengan dua parameter . Data yang digunakan yaitu data besar klaim pada perusahaan asuransi PT ABC Tahun 2015 mengenai data klaim Partial Loss asuransi kendaraan bermotor untuk semua wilayah kategori 7. Berdasarkan hasil penerapan distribusi log-gamma disimpulkan bahwa data besar klaim asuransi kendaraan bermotor kategori 7 semua wilayah berasal dari populasi yang berdistribusi log-gamma.
Penerapan Distribusi Campuran Lognormal-Gamma pada Data Besar Klaim Asuransi Kendaraan Bermotor Sheli Andriani; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.5685

Abstract

Abstract. Insurance is an agreement between the insurer and the insured, which requires the insured to pay a premium to provide reimbursement for the risk of loss, damage, death or loss of profits due to an unexpected event. Some of the terms in insurance, one of which is a claim, when a claim occurs when the insured experiences a risk, the insurer will compensate for the loss according to the agreement stated in the policy (written agreement). In several previous studies, there are distributions that are applied to large claims data such as the Pareto distribution and the Weillbul distribution. This study will use a mixed lognormal-gamma distribution. The mixed distribution of the lognormal gamma mixture belongs to the continuous distribution with three parameters (µ, α, and β). The data used is the big data of claims at the insurance company PT XZ in 2014 regarding the data of claims for Partial Loss motor vehicle insurance for region 1 category 5. Based on the results of applying the mixed lognormal-gamma distribution it is concluded that the big data for motor vehicle insurance claims for category 5 region 1 comes from population with mixed lognormal-gamma distribution Abstrak. Asuransi merupakan perjanjian antara penanggung dan tertanggung, yang mewajibkan tertanggung membayar sejumlah premi untuk memberikan penggantian atas risiko kerugian, kerusakan, kematian, atau kehilangan keuntungan karena suatu peristiwa yang tidak terduga. Beberapa istilah dalam asuransi salah satunya yaitu klaim, terjadinya klaim ketika tertanggung mengalami risiko maka penanggung akan mengganti kerugian sesuai dengan kesepakatan yang tertera dalam polis (perjanjian tertulis). Dalam beberapa penelitian terdahulu, terdapat distribusi yang diterapkan pada data besar klaim seperti distribusi Pareto dan distribusi Weillbul. Pada penelitian ini akan menggunakan distribusi campuran lognormal-gamma. Distribusi campuran lognormal gamma termasuk kedalam distribusi kontinu dengan tiga parameter (µ, α, dan β). Data yang digunakan yaitu data besar klaim pada perusahaan asuransi PT XZ Tahun 2014 mengenai data klaim Partial Loss asuransi kendaraan bermotor untuk wilayah 1 kategori 5. Berdasarkan hasil penerapan distribusi campuran lognormal-gamma disimpulkan bahwa data besar klaim asuransi kendaraan bermotor kategori 5 wilayah 1 berasal dari populasi yang berdistribusi campuran lognormal-gamma.
Penerapan Distribusi Poisson Bivariat pada Data Jumlah Gol Hasil Pertandingan Sepak Bola Liga 1 Indonesia Tahun 2018-2019 Alfan Siam Nuri; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.5755

Abstract

Abstract. On every continent in the world there are several prestigious league competitions that roll on and become a place to meet the best players, for example on the continent of Europe there are some of the best leagues. For example the English Premiere League (EPL) in England, La Liga in Spain, Serie A in Italy, the Bundes League in Germany and Ligue 1 in France. In Indonesia itself there is a league competition which is currently known as the Indonesian Super League (ISL) or the Indonesian League 1 which is the highest caste football competition between clubs in Indonesia which is participated in by 18 teams. There are several univariate and bivariate distributions that can be used to model data on the number of goals scored by football teams. One such bivariate distribution is the bivariate Poisson distribution. The maximum likelihood estimator method is used to estimate the parameters of the discrete distribution. While the distribution fit test to be used is the chi-square test. The data that will be used contains information on the number of goals for the home team and the number of goals for the away team in the 2018-2019 Indonesian Super League matches. The results of the application show that the bivariate Poisson distribution is suitable for modeling bivariate data on the number of goals for the home team and the away team for the 2018-2019 Indonesian Super League. Abstrak. Di setiap benua di dunia terdapat beberapa kompetisi liga bergengsi yang bergulir dan menjadi ajang bertemu pemain-pemain terbaik, misalnya benua Eropa terdapat beberapa liga terbaik. Contohnya English Premiere League (EPL) di Inggris, La Liga di Spanyol, Serie A di Italia, Bundes Liga di Jerman dan Ligue 1 di Francis. Di Indonesia sendiri terdapat kompetisi liga yang pada saat ini dikenal dengan sebutan Indonesian Super League (ISL) atau Liga 1 Indonesia yang merupakan kompetisi sepak bola kasta tertinggi antar klub di Indonesia yang diikuti oleh 18 tim. Terdapat beberapa distribusi univariat dan bivariat yang dapat digunakan untuk memodelkan data jumlah gol tim sepakbola. Salah satu distribusi bivariat tersebut adalah distribusi Poisson bivariat. Metode penaksir kemungkinan maksimum digunakan untuk menaksir parameter distribusi diskrit tersebut. Sedangkan uji kecocokan distribusi yang akan digunakan adalah uji chi-kuadrat. Data yang akan digunakan tersebut berisi informasi jumlah gol tim kandang dan jumlah gol tim tandang pertandingan Liga 1 Indonesia tahun 2018-2019. Hasil penerapan menunjukkan bahwa distribusi Poisson bivariat cocok untuk memodelkan data bivariat jumlah gol tim kandang dan tim tandang Liga 1 Indonesia tahun 2018-2019.
Pemodelan Data Hasil Pertandingan Sepak Bola Menggunakan Model Bradley-Terry Muhammad Iqbal Fauzi; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.6074

Abstract

Abstract. This article discusses football match result data modelling using the Bradley-Terry model. Liga 1 Indonesia is the highest caste football competition between clubs in Indonesia which is currently being participated in by 18 teams. The Indonesian League was held for the first time in 1994 which was a merger between the previous major competitions, namely association (1931-1994) and Galatama (Main Football League 1979-1994). The Bradley-Terry model is one model that can be used to model the home team's chances of winning, drawing and losing in a soccer match. The parameters in the probability of winning, drawing and losing are estimated using the maximum likelihood estimation method. Therefore will be 20 parameters that is , , dan . The materials that will be used to apply the methods discussed in this thesis are secondary data recorded from PT Liga Indonesia. The estimated values of the probability of winning, drawing and losing model parameters that can be used to calculate the estimated value of the odds of winning, drawing and losing as the home team for one season. The results of the analysis show that around 74% of match results can be estimated correctly. Abstrak. Liga 1 Indonesia adalah kompetisi sepak bola kasta tertinggi antar klub di Indonesia yang pada saat ini diikuti oleh 18 tim. Liga Indonesia diselenggarakan pertama kali pada tahun 1994 yang merupakan penggabungan antara kompetisi besar sebelumnya, yaitu Perserikatan (1931-1994) dan Galatama (Liga Sepak Bola Utama 1979-1994). Model Bradley-Terry merupakan salah satu model yang dapat digunakan untuk memodelkan peluang menang, imbang, dan kalah tim tuan rumah dalam pertandingan sepak bola. Parameter-parameter yang ada pada model peluang menang, imbang dan kalah ditaksir dengan menggunakan metode penaksiran kemungkinan maksimum. Dengan demikian akan ada sebanyak 20 parameter yaitu y, v, dan phi 1, phi 2, ..., phi 18. Bahan yang akan digunakan untuk mengaplikasikan metode yang dibahas dalam skripsi ini adalah data sekunder hasil pencatatan yang diperoleh dari PT Liga Indonesia. Nilai-nilai taksiran parameter model peluang menang, imbang, dan kalah yang dapat digunakan untuk menghitung taksiran nilai peluang menang, imbang, dan kalah sebagai tim tuan rumah selama satu musim. Hasil analisis menunjukan bahwa sekitar 74% hasil pertandingan dapat di taksir dengan tepat. Nilai-nilai taksiran parameter model peluang menang, imbang, dan kalah yang dapat digunakan untuk menghitung taksiran nilai peluang menang, imbang, dan kalah sebagai tim tuan rumah selama satu musim. Hasil analisis menunjukan bahwa sekitar 74% hasil pertandingan dapat di taksir dengan tepat.
Pemodelan Data Besar Kerugian Asuransi Kendaraan Bermotor di Indonesia Menggunakan Distribusi Weibull-Loss Disa Fauzana; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.6846

Abstract

Abstract. Loss data modelling is one of important stages in predicting future premiums. Modelling distribution loss data with heavy tailed is prominent research topic. Weibull distribution is a heavy tailed distribution, so that it becomes the initial choice to be used in modeling heavy tailed losses in the finance and insurance. However, the Weibull distribution fails to modelling loss data with large loses. To overcome the problems that existed in the previous distributions, it is necessary to propose a new distribution. A new family of distributions is considered to model loss data for heavy tailed. One of the distributions included in the above distribution family is the three-parameter Weibull-Loss distribution. In this article the Weibull-Loss distribution will be applied to loss data on motor vehicle insurance losses in Indonesia. The procedures for modeling loss data using the Weibull-Loss distribution are: (1) formulating the research hypothesis, (2) estimating the parameters of the Weibull-Loss distribution using the maximum likelihood estimation method, (3) testing the fit of the distribution using the Kolmogorov-Smirnov method. The materials used are secondary data obtained from the insurance company PT. XY year 2014, the data contains partial loss data of motor vehicle insurance holders at Category 8 Region 2 which consists of the DKI Jakarta, West Java and Banten areas. The calculation results show the motor vehicle insurance loss data at the insurance company PT. XY year 2014 Category 8 Region 2 in Indonesia comes from a population with a Weibull-Loss distribution. Abstrak. Pemodelan data besar kerugian merupakan salah satu tahapan penting dalam memprediksi premi di masa depan. Pemodelan distribusi besar kerugian dengan heavy tailed (ekor tebal) adalah topik penelitian yang menonjol. Distribusi Weibull termasuk distribusi heavy tailed, sehingga menjadi pilihan awal untuk digunakan dalam memodelkan besar kerugian dengan heavy tailed di bidang keuangan dan asuransi. Namun demikian distribusi Weibull gagal untuk memodelkan data besar kerugian yang nilainya besar-besar. Untuk mengatasi masalah yang ada pada distribusi-distribusi sebelumnya, perlu diusulkan distribusi baru. Keluarga distribusi baru dipertimbangkan untuk memodelkan data besar kerugian untuk heavy tailed. Salah satu distribusi yang termasuk keluarga distribusi di atas adalah distribusi Weibull-Loss tiga parameter. Dalam artikel ini distribusi Weibull-Loss akan diterapkan pada data besar kerugian asuransi kendaraan bermotor di Indonesia. Prosedur pemodelan data besar kerugian menggunakan distribusi Weibull-Loss adalah: (1) merumuskan hipotesis penelitian, (2) menaksir parameter distribusi Weibull-Loss menggunakan metode penaksiran kemungkinan maksimum, (3) uji kecocokan distribusi menggunakan uji Kolmogorov-Smirnov. Bahan yang digunakan merupakan data sekunder yang diperoleh dari perusahaan asuransi PT. XY tahun 2014, data tersebut berisi data besar kerugian Partial Loss pemegang asuransi kendaraan bermotor Kategori 8 yaitu kendaraan jenis Roda dua di Wilayah 2 yang terdiri dari daerah DKI Jakarta, Jawa Barat, dan Banten. Hasil perhitungan menunjukan data besar kerugian asuransi kendaraan bermotor pada perusahaan asuransi PT. XY tahun 2014 Kategori 8 Wilayah 2 di Indonesia berasal dari populasi yang berdistribusi Weibull-Loss.
Pemodelan Distribusi Poisson-Sujatha pada Data Frekuensi Klaim Asuransi Kendaraan Bermotor di Indonesia Muhammad Rizq Nafisyah Alam; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.7018

Abstract

Abstract. Insurance is an agreement between two or more parties where the insurer promises to the insured by receiving a premium to compensate the insured against loss, damage or loss of profits. There are lots of insurance services or products, one of the insurance services that is widely used is motor vehicle insurance. Vehicle insurance itself is a type of insurance that provides benefits in the form of compensation or damage to the vehicle. Data frequency claims that contain overdispersion problems must be modeled with distributions that are able to handle overdispersion problems. The mixed Poisson distribution is often used as an alternative method for modeling data frequency claims when overdispersion occurs. Some mixed Poisson distributions include Poisson-Lindley, Poisson-Lognormal, and Poisson-weighted Exponential. The Poisson-Sujatha distribution (PSD) was introduced by Shanker in 2016 as one of the mixed Poisson distributions. The strengths of PSD are in getting the moments and the application. The moments of the PSD distribution can be obtained easily by following the simple method introduced by Shanker (2016). This thesis will discuss modeling the Poisson-Sujatha distribution (PSD) on motor vehicle insurance claim frequency data in Indonesia in 2013. The maximum likelihood estimation method is used to estimate the parameters of the PSD distribution. The fit test used in this study was the Chi-Square fit test. The research material used is secondary data on the frequency of motor vehicle insurance claims recorded by PT. X category 3 (passenger transportation whose insured price is more than Rp. 200,000,000 to Rp. 400,000,000) region 25 (North Sumatra Province) in 2013. Based on the results of applying the data on the frequency of motor vehicle insurance claims at PT. X category 3 region 25 in 2013, the PSD distribution is suitable for modeling motor vehicle insurance frequency claims data cases. Abstrak. Asuransi adalah suatu perjanjian antara dua pihak atau lebih dimana penanggung berjanji kepada tertanggung dengan menerima premi untuk mengganti kerugian tertanggung terhadap kerugian, kerusakan, atau kehilangan keuntungan. Ada banyak sekali layanan atau produk asuransi, salah satu layanan asuransi yang banyak digunakan adalah asuransi kendaraan bermotor. Asuransi kendaraan itu sendiri adalah jenis asuransi yang memberikan manfaat berupa pemberian ganti rugi atau kerusakan pada kendaraan bermotor. Data frekuensi klaim yang mengandung masalah overdispersi harus dimodelkan dengan distribusi yang mampu menangani masalah overdispersi. Distribusi campuran Poisson sering digunakan sebagai metode alternatif untuk pemodelan data frekuensi klaim ketika terjadi overdispersi. Beberapa distribusi campuran Poisson diantaranya adalah Poisson-Lindley, Poisson-Lognormal, dan Poisson-weighted Eksponensial. Distribusi Poisson-Sujatha (PSD) diperkenalkan oleh Shanker pada tahun 2016 sebagai salah satu distribusi campuran Poisson. Kelebihan dari PSD adalah dalam hal mendapatkan momen-momennya dan aplikasinya. Momen-momen dari distribusi PSD dapat diperoleh secara mudah dengan mengikuti metode sederhana yang diperkenalkan oleh Shanker (2016). Pada skripsi ini akan dibahas mengenai pemodelan distribusi Poisson-Sujatha (PSD) pada data frekuensi klaim asuransi kendaraan bermotor di Indonesia pada tahun 2013. Metode penaksiran kemungkinan maksimum digunakan untuk menaksir parameter dari distribusi PSD. Uji kecocokan yang digunakan dalam penelitian ini adalah uji kecocokan Chi-Kuadrat. Bahan penelitian yang digunakan berupa data sekunder frekuensi klaim asuransi kendaraan bermotor hasil pencatatan PT. X kategori 3 (angkutan penumpang yang harga pertanggungannya yang lebih dari Rp. 200.000.000 s.d. Rp. 400.000.000) wilayah 25 (Provinsi Sumatera Utara) pada tahun 2013. Berdasarkan hasil penerapan pada data frekuensi klaim asuransi kendaraan bermotor di PT. X kategori 3 wilayah 25 pada tahun 2013, distribusi PSD cocok untuk memodelkan kasus data frekuensi klaim asuransi kendaraan bermotor..
Penerapan Distribusi Komposit Lognormal-Pareto pada Data Klaim Asuransi Harta Benda di Indonesia Andi Setia Nugraha; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.7030

Abstract

Abstract. This thesis discusses modeling the lognormal-Pareto composite distribution of property insurance claims data in Indonesia. In the composite model there is a threshold value that is calculated using the square root rule heuristic method. Parameter estimation for each distribution uses the maximum likelihood estimation method through the Newton-Raphson numerical method. The initial value for each parameter is obtained from the moment estimator for each distribution. The distribution fit test was carried out using the Kolmogorov-Smirnov fit test. The data used is secondary data from the insurance company PT. XYZ in 2017. The data contains large data on property insurance policyholder claims. The results of the application show that the big data on property insurance claims of PT. XYZ in 2017 comes from a population with a lognormal-Pareto composite distribution. Abstrak. Dalam skripsi ini dibahas pemodelan distribusi komposit lognormal-Pareto pada data klaim asuransi harta benda di Indonesia. Dalam model komposit terdapat nilai ambang batas yang dihitung menggunakan metode heuristik aturan akar kuadrat. Penaksiran parameter untuk masing-masing distribusinya menggunakan metode penaksiran kemungkinan maksimum melalui metode numerik Newton-Raphson. Nilai awal untuk masing-masing parameter didapat dari penaksir moment setiap distribusinya. Pengujian kecocokan distribusi dilakukan menggunakan uji kecocokan Kolmogorov-Smirnov. Data yang digunakan adalah data sekunder dari perusahaan asuransi PT. XYZ tahun 2017. Data tersebut berisi data besar klaim pemegang polis asuransi harta benda. Hasil penerapan menunjukan bahwa data besar klaim asuransi harta benda PT. XYZ tahun 2017 berasal dari populasi yang berdistribusi komposit lognormal-Pareto.
Pemodelan Distribusi Poisson-Amarendra pada Data Frekuensi Klaim Asuransi Kendaraan Bermotor di Indonesia Yusuf Fahrizal; Aceng Komarudin Mutaqin
Bandung Conference Series: Statistics Vol. 3 No. 1 (2023): Bandung Conference Series: Statistics
Publisher : UNISBA Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/bcss.v3i1.7033

Abstract

Abstract. Insurance is an agreement between two or more parties where the insurer promises to the insured by receiving a premium to compensate the insured against loss, damage or loss of profits. Vehicle insurance itself is a type of insurance that provides benefits in the form of compensation or damage to motorized vehicles. The mixed Poisson distribution is often used as an alternative method for modeling claim frequency data when overdispersion occurs. The Poisson-Amarendra distribution was introduced by Shanker in 2016 as one of the mixed Poisson distributions. The Poisson-Amarendra distribution (PAD) has been matched using maximum likelihood estimation for a given data set to test its goodness against the Poisson distribution (PD), the Poisson-Lindley distribution (PLD) ) and the Poisson-Sujatha distribution (PSD). It was found that the Poisson-Amarendra (PAD) distribution provides a better fit than the PD, PLD and PSD for the 1967 thunderstorm X event data at Cape Kennedy, Florida written by Shaker (2016). The Poisson-Amarendra distribution is rarely used to model data sets when the data is over-dispersive. The Poisson-Amarendra distribution (PAD) is suitable for modeling data on the frequency of motor vehicle insurance claims in Indonesia in 2013. It is known that based on calculations with the Chi-square test that has been carried out the null hypothesis is accepted (H_0 is accepted) and it can be concluded that the data on the frequency of motor vehicle insurance claims at PT. X category 3 34 regions in 2013 came from populations with PAD distribution. Abstrak. Asuransi adalah suatu perjanjian antara dua pihak atau lebih dimana penanggung berjanji kepada tertanggung dengan menerima premi untuk mengganti kerugian tertanggung terhadap kerugian, kerusakan, atau kehilangan keuntungan. Asuransi kendaraan itu sendiri adalah jenis asuransi yang memberikan manfaat berupa pemberian ganti rugi atau kerusakan pada kendaraan bermotor. Distribusi campuran Poisson sering digunakan sebagai metode alternatif untuk pemodelan data frekuensi klaim ketika terjadi overdispersi. Distribusi Poisson-Amarendra diperkenalkan oleh Shanker pada tahun 2016 sebagai salah satu distribusi campuran Poisson.Distribusi Poisson-Amarendra (PAD) telah dicocokan menggunakan estimasi kemungkinan maksimum untuk set data tertentu untuk menguji kebaikannya terhadap ditribusi Poisson (PD), distribusi Poisson-Lindley(PLD) dan distribusi Poisson-Sujatha (PSD). Ditemukan bahwa distribusi Poisson-Amarendra (PAD) memberikan kecocokan yang lebih baik daripada PD, PLD dan PSD untuk data peristiwa badai petir X di Cape Kennedy, Florida tahun 1967 yang ditulis oleh Shaker (2016). Distribusi Poisson-Amarendra masih jarang digunakan untuk memodelkan set data ketika data tersebut mengalami overdispersi. Distribusi Poisson-Amarendra (PAD) cocok untuk memodelkan data frekuensi klaim asuransi kendaraan bermotor di Indonesia pada tahun 2013. Diketahui berdasarkan perhitungan dengan uji Chi-kuadrat yang telah dilakukan hipotesis nol diterima (H_0 diterima) dan dapat disimpulkan bahwa data frekuensi klaim asuransi kendaraan bermotor di PT. X kategori 3 wilayah 34 pada tahun 2013 berasal dari populasi yang berdistribusi PAD.
Pemodelan Distribusi Poisson-Sujatha pada Data Frekuensi Klaim Asuransi Kendaraan Bermotor di Indonesia Muhammad Rizq Nafisyah Alam; Aceng Komarudin Mutaqin
Jurnal Riset Statistika Volume 3, No. 1, Juli 2023, Jurnal Riset Statistika (JRS)
Publisher : UPT Publikasi Ilmiah Unisba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jrs.v3i1.1944

Abstract

Abstract. Insurance is an agreement between two or more parties where the insurer promises to the insured by receiving a premium to compensate the insured against loss, damage or loss of profits. There are lots of insurance services or products, one of the insurance services that is widely used is motor vehicle insurance. Vehicle insurance itself is a type of insurance that provides benefits in the form of compensation or damage to the vehicle. Data frequency claims that contain overdispersion problems must be modeled with distributions that are able to handle overdispersion problems. The mixed Poisson distribution is often used as an alternative method for modeling data frequency claims when overdispersion occurs. Some mixed Poisson distributions include Poisson-Lindley, Poisson-Lognormal, and Poisson-weighted Exponential. The Poisson-Sujatha distribution (PSD) was introduced by Shanker in 2016 as one of the mixed Poisson distributions. The strengths of PSD are in getting the moments and the application. The moments of the PSD distribution can be obtained easily by following the simple method introduced by Shanker (2016). This thesis will discuss modeling the Poisson-Sujatha distribution (PSD) on motor vehicle insurance claim frequency data in Indonesia in 2013. The maximum likelihood estimation method is used to estimate the parameters of the PSD distribution. The fit test used in this study was the Chi-Square fit test. The research material used is secondary data on the frequency of motor vehicle insurance claims recorded by PT. X category 3 (passenger transportation whose insured price is more than Rp. 200,000,000 to Rp. 400,000,000) region 25 (North Sumatra Province) in 2013. Based on the results of applying the data on the frequency of motor vehicle insurance claims at PT. X category 3 region 25 in 2013, the PSD distribution is suitable for modeling motor vehicle insurance frequency claims data cases. Abstrak. Asuransi adalah suatu perjanjian antara dua pihak atau lebih dimana penanggung berjanji kepada tertanggung dengan menerima premi untuk mengganti kerugian tertanggung terhadap kerugian, kerusakan, atau kehilangan keuntungan. Ada banyak sekali layanan atau produk asuransi, salah satu layanan asuransi yang banyak digunakan adalah asuransi kendaraan bermotor. Asuransi kendaraan itu sendiri adalah jenis asuransi yang memberikan manfaat berupa pemberian ganti rugi atau kerusakan pada kendaraan bermotor. Data frekuensi klaim yang mengandung masalah overdispersi harus dimodelkan dengan distribusi yang mampu menangani masalah overdispersi. Distribusi campuran Poisson sering digunakan sebagai metode alternatif untuk pemodelan data frekuensi klaim ketika terjadi overdispersi. Beberapa distribusi campuran Poisson diantaranya adalah Poisson-Lindley, Poisson-Lognormal, dan Poisson-weighted Eksponensial. Distribusi Poisson-Sujatha (PSD) diperkenalkan oleh Shanker pada tahun 2016 sebagai salah satu distribusi campuran Poisson. Kelebihan dari PSD adalah dalam hal mendapatkan momen-momennya dan aplikasinya. Momen-momen dari distribusi PSD dapat diperoleh secara mudah dengan mengikuti metode sederhana yang diperkenalkan oleh Shanker (2016). Pada skripsi ini akan dibahas mengenai pemodelan distribusi Poisson-Sujatha (PSD) pada data frekuensi klaim asuransi kendaraan bermotor di Indonesia pada tahun 2013. Metode penaksiran kemungkinan maksimum digunakan untuk menaksir parameter dari distribusi PSD. Uji kecocokan yang digunakan dalam penelitian ini adalah uji kecocokan Chi-Kuadrat. Bahan penelitian yang digunakan berupa data sekunder frekuensi klaim asuransi kendaraan bermotor hasil pencatatan PT. X kategori 3 (angkutan penumpang yang harga pertanggungannya yang lebih dari Rp. 200.000.000 s.d. Rp. 400.000.000) wilayah 25 (Provinsi Sumatera Utara) pada tahun 2013. Berdasarkan hasil penerapan pada data frekuensi klaim asuransi kendaraan bermotor di PT. X kategori 3 wilayah 25 pada tahun 2013, distribusi PSD cocok untuk memodelkan kasus data frekuensi klaim asuransi kendaraan bermotor..