p-Index From 2021 - 2026
5.083
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) dCartesian: Jurnal Matematika dan Aplikasi MATEMATIKA Jurnal Ilmu Lingkungan Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Indonesian Journal of Mathematics and Natural Sciences Kreano, Jurnal Matematika Kreatif-Inovatif Jurnal Teknologi Informasi dan Ilmu Komputer JUITA : Jurnal Informatika International Journal of Advances in Intelligent Informatics Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Fourier JOIN (Jurnal Online Informatika) Science and Technology Indonesia JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Penelitian Pendidikan IPA (JPPIPA) Desimal: Jurnal Matematika BAREKENG: Jurnal Ilmu Matematika dan Terapan JTAM (Jurnal Teori dan Aplikasi Matematika) International Journal of Computing Science and Applied Mathematics International Journal on Emerging Mathematics Education SJME (Supremum Journal of Mathematics Education) Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Journal on Education Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications KAIBON ABHINAYA : JURNAL PENGABDIAN MASYARAKAT Jurnal Abdi Insani Indonesian Journal of Electrical Engineering and Computer Science Jurnal Sains dan Edukasi Sains Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Jurnal Teknik Informatika (JUTIF) Journal of Science and Science Education International Journal of Community Service Jurnal Ilmiah Sains Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya d'Cartesian: Jurnal Matematika dan Aplikasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Limits: Journal of Mathematics and Its Applications SJME (Supremum Journal of Mathematics Education) Lontar Komputer: Jurnal Ilmiah Teknologi Informasi
Claim Missing Document
Check
Articles

Regresi Linier Berganda Termodifikasi untuk Data Spektrum pada Larutan Konsentrasi Glukosa, Sukrosa, dan Fruktosa Kurniawan, Yusuf; Sasongko, Leopoldus Ricky; Parhusip, Hanna Arini
Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya 2019: Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (886.228 KB)

Abstract

Penelitian ini bertujuan untuk memperoleh model pendekatan data spektrum suatu larutan yang berisi konsentrasi glukosa, sukrosa, dan fruktosa dengan menggunakan regresi linier berganda. Data spektrum yang didapatkan dari Pusat Studi (Pusdi) Aplikasi Near Infrared (NIR) FSM UKSW merupakan hasil penembakan dua hingga tiga gram dari larutan itu oleh sinar infrared pada alat spektrometer dengan panjang-panjang gelombang tertentu yang selanjutnya data spektrum tiap gelombang yang diperoleh dianalisis melalui analisis regresi linier berganda berdasarkan informasi parameter-parameter regresi, koefisien determinasi, dan signifikansi tiap parameter pada model. Fungsi parameter regresi yang bergantung pada panjang gelombang diperoleh dengan menginterpolasi parameter seluruh model yang telah didapat di setiap panjang gelombang melalui interpolasi polinomial Newton yang selanjutnya diperoleh model pendekatan data spektrum sebagai tujuan penelitian ini. Uji Kolmogorov-Smirnov satu sampel dilakukan untuk menguji distribusi Normal baku pada distribusi error, selisih hasil yang diperoleh model pendekatan terhadap data spektrum yang dimiliki pusdi aplikasi NIR FSM UKSW. Dengan distribusi error yang sebagian besar model mengikuti distribusi Normal baku, model yang selanjutnya disebut model regresi linier berganda termodifikasi dapat dikatakan cukup baik untuk memodelkan data spektrum. Dengan didapatkannya model regresi linier ini dapat diestimasi nilai – nilai data spektrum pada konsentrasi dan panjang gelombang tertentu.
LSTM-IOT (LSTM-based IoT) untuk Mengatasi Kehilangan Data Akibat Kegagalan Koneksi Susetyo, Yosia Adi; Parhusip, Hanna Arini; Trihandaru, Suryasatriya; Susanto, Bambang
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 12 No 1: Februari 2025
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2025129157

Abstract

Masalah dalam industri terkait kehilangan data suhu dan kelembaban sering terjadi akibat gangguan perangkat atau hilangnya koneksi. Data ini penting untuk menentukan kelayakan produk yang akan didistribusikan. Untuk mengatasi permasalahan tersebut, dikembangkan inovasi LSTM-IOT, yaitu perangkat IoT yang terintegrasi dengan model Long Short-Term Memory (LSTM) dalam arsitektur Environment Intelligence. Arsitektur ini telah dioptimalkan melalui eksperimen menggunakan berbagai jenis optimizer, seperti Adam, RMSprop, AdaGrad, SGD, Nadam, dan Adadelta. Dari hasil optimasi, kombinasi Nadam Optimizer dengan arsitektur terpilih menunjukkan kinerja unggul dengan nilai Mean Square Error (MSE) sebesar 5,844 x10⁻⁵, Mean Absolute Error (MAE) sebesar 0,005971, dan Root Mean Square Error (RMSE) sebesar 0, 007645. Arsitektur Environment Intelligence versi (a) dengan Nadam Optimizer terbukti paling efektif dalam memproses data sensor, sehingga dipilih untuk integrasi dengan perangkat LSTM-IOT. Implementasi LSTM-IOT dalam skenario dunia nyata dilakukan pada wadah web lokal yang memungkinkan akses real-time ke data suhu dan kelembaban di berbagai lokasi. Halaman web berbasis Streamlit ini menampilkan visualisasi data, performa LSTM, dan hasil prediksi. Uji fungsional menunjukkan bahwa LSTM-IOT memenuhi kebutuhan perusahaan, termasuk penyimpanan data dalam database internal serta prediksi kondisi lingkungan hingga 150 menit ke depan. Dengan fitur prediksi dan pemantauan yang canggih, perangkat ini memberikan solusi efisien dan bernilai tinggi bagi perusahaan dalam memantau kondisi lingkungan secara akurat dan proaktif.   Abstract Problems in the industry related to temperature and humidity data loss are often caused by device interference or loss of connection. This data is important to determine the feasibility of the product to be distributed. To overcome these problems, an LSTM-IOT innovation was developed, namely an IoT device that is integrated with the Long Short-Term Memory (LSTM) model in the Environment Intelligence architecture. This architecture has been optimized through experiments using different types of optimizers, such as Adam, RMSprop, AdaGrad, SGD, Nadam, and Adadelta. From the optimization results, the combination of Nadam Optimizer with the selected architecture shows superior performance with a mean square error (MSE) value of 5.844 x 10⁻⁵, a mean absolute error (MAE) of 0.005971, and a root mean square error (RMSE) of 0.007645. The Environment Intelligence architecture version (a) with Nadam Optimizer proved to be the most effective in processing sensor data, so it was chosen for integration with LSTM-IOT devices. The implementation of LSTM-IOT in real-world scenarios is carried out on a local web container that allows real-time access to temperature and humidity data in various locations. This Streamlit-based webpage displays data visualizations, LSTM performance, and prediction results. Functional tests show that LSTM-IOT meets the needs of the company, including data storage in an internal database and prediction of environmental conditions for up to the next 150 minutes. With advanced prediction and monitoring features, these devices provide efficient and high-value solutions for companies to monitor environmental conditions accurately and proactively.
Modeling and Estimating GARCH-X and Realized GARCH Using ARWM and GRG Methods Nugroho, Didit Budi; Wijaya, Melina Tito; Parhusip, Hanna Arini
(IJCSAM) International Journal of Computing Science and Applied Mathematics Vol 11, No 1 (2025)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24775401.v11i1.20333

Abstract

This study evaluates the fitting performance of GARCH-X(1,1) and RealGARCH(1,1) models, which are extensions of GARCH(1,1) model by adding the Realized Kernel measure as an exogenous component, on real data, namely the Financial Times Stock Exchange 100 and Hang Seng stock indices over the period from January 2000 to December 2017. The models assume that the return error follows Normal and Student-t distributions. The parameters of models are estimated by using the Adaptive Random Walk Metropolis (ARWM) method implemented in Matlab and the Generalized Reduced Gradient (GRG) method. The comparison of estimation results shows that the GRG method has a good ability to estimate the models because it provides the estimation results that are close to the results of the ARWM method in terms of relative error. On the basis of Akaike Information Criterion, the RealGARCH models perform better than the GARCH-X models, where the RealGARCH model with Student-t distribution provides the best fit.
Predictive Performance Evaluation of ARIMA and Hybrid ARIMA-LSTM Models for Particulate Matter Concentration Kurniawan, Johanes Dian; Parhusip, Hanna Arini; Trihandaru, Suryasatria
JOIN (Jurnal Online Informatika) Vol 9 No 2 (2024)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v9i2.1318

Abstract

This study provides an objective evaluation of prediction performance models for particulate matter policy for industrial stakeholders by comparing the ARIMA and Hybrid ARIMA-LSTM models for predicting air quality data from the industrial environment. In the case of PM 1.0 concentration, we have an RMSE value of 8.29 and an error ratio of 0.45 for the ARIMA model and an RMSE value of 3.54 and an error ratio of 0.22 for the hybrid ARIMA-LSTM model. Meanwhile, for PM 2.5 concentration, we obtain an RMSE value of 6.61, an error ratio of 0.66 for the ARIMA model, an RMSE value of 2.68, and an error ratio of 0.19 for the hybrid ARIMA-LSTM model. According to this study, the ARIMA model, which is found in autoarima and represents the best model, is (2,0,1) for PM1.0 and (1,0,1) for PM2.5. The hybrid ARIMA-LSTM model outperforms the ARIMA model in terms of prediction accuracy, as evidenced by the RMSE and error ratio values, which are improved by approximately 57.30% and 51.11% for PM1.0 and 59.46% and 71.21% for PM2.5, respectively, since the hybrid ARIMA-LSTM model can accommodate variable-length sequences and capture long-term relationships to become noise-resistant, which makes higher prediction accuracy possible.
Development of Staff Evaluation Software Based on Association Matrix Methods and Data Mining Using the Streamlit Framework Susetyo, Yosia Adi; Parhusip, Hanna Arini; Trihandaru, Suryasatriya
JUITA: Jurnal Informatika JUITA Vol. 12 No. 2, November 2024
Publisher : Department of Informatics Engineering, Universitas Muhammadiyah Purwokerto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30595/juita.v12i2.23300

Abstract

This study discusses evaluating employee performance in microbiology laboratories using an association matrix implemented in web-based software with the Streamlit framework. The purpose of the research is to improve the employee performance evaluation process, which previously used conventional methods. This software is built from a sample receipt recording history data stored in a MySQL database. The initially unstructured data was processed using Python libraries such as NumPy, Matplotlib, Pandas, and Difflib to generate personnel evaluation information such as specialization, task duration, workload, and individual competencies. This software can provide a fast and accurate performance assessment according to the evaluation period. In a test with the System Usability Scale (SUS), the software scored 75.83, which was rated "good.". These results show that the software is easy to use and can improve the efficiency of employee performance evaluation. Follow-up tests with questionnaires given to 18 users showed that this system was preferable to previous conventional methods. This software helps laboratory managers evaluate employee performance effectively and efficiently.
OVERCOMING OVERFITTING IN MONKEY VOCALIZATION CLASSIFICATION: USING LSTM AND LOGISTIC REGRESSION Trihandaru, Suryasatriya; Parhusip, Hanna Arini; Goni, Abdiel Wilyar
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp973-986

Abstract

The problem of overfitting in a classification task involving animal vocalizations, namely squirrel monkeys, golden lion tamarins, and tailed macaques, is handled in this project. Acoustic features extracted for the audio data used in this research are MFCCs. The classification of subjects was done using the LSTM model. However, several architectures with LSTM also presented the problem of overfitting. To overcome this, a logistic regression model was used, which had a classification accuracy of 100%. These results indicate that for such a classification problem, logistic regression may be more appropriate than the complex architecture of LSTMs. Several LSTM architectures have been presented in this study to give an overall review of the observed challenges. Although the capability of LSTM in handling sequential data is very promising, sometimes simpler models might be preferred, as indicated by the results. This is a single-dataset work, and the findings may not generalize well to other domains. The work contributes much-needed insight into the choice of models for audio classification tasks and identifies the trade-off between model complexity and performance
Analisis Indeks Pembangunan Manusia (IPM) Kabupaten/Kota di Provinsi Maluku Utara Menggunakan Indeks Geary C Berdasarkan Resampling Estimasi Densitas Kernel Fetriks Theo Sarita; Adi Setiawan; Hanna Arini Parhusip
Jurnal Teknik Informatika dan Sistem Informasi Vol 5 No 1 (2019): JuTISI
Publisher : Maranatha University Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28932/jutisi.v5i1.1582

Abstract

In this study, it is discussed the Regency/City Human Development Index (HDI) in North Maluku Province to determine the spatial influence of HDI. The data used are Regency/City HDI in North Maluku Province from 2013 to 2017. Furthermore, spatial autocorrelation test with Geary C index is used based on resampling by using Estimated Kernel Density. The test is done to determine whether the Regency/City HDI affects the neighboring Regency/City HDI. Based on the results of optimal bandwidth usage (hopt) with a repetition of 10000 times it is obtained p-value 0.0318, 0.0272, 0.0282, 0.0262 and 0.0258, respectively from 2013 to 2017. Thus, there is a spatial between Regencies/Cities in North Maluku Province from 2013 to 2017. In other words, if the HDI in a Regency/City is high then the neighbouring Regency/City HDI tends to be high, and vice versa.
Learning Algorithms of SVR, DTR, RFR, and XGBoost (Case Study: Predictive Maintenance of Fuel Consumption) Parhusip, Hanna Arini; Lea, Lea; Trihandaru, Suryasatriya; Nugroho, Didit Budi; Santosa, Petrus Priyo; Hariadi, Adrianus Herry
Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI Vol. 14 No. 2 (2025)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v14i2.85657

Abstract

The most complex aspect of predictive maintenance (PdM) for heavy vehicles is accurately forecasting fuel consumption as it is both critical and challenging to achieve optimal efficiency while minimizing expenses. Overfitting and failure to capture the existing data's linear relationships seem to remain the most persistent issues with traditional methods. In order to achieve this, the following techniques were analyzed to choose the best fuel consumption forecaster: Support Vector Regression (SVR), Decision Tree Regression (DTR), Random Forest Regression (RFT), and XGBoost. The models were implemented and their performance measured using Mean Squared Error (MSE). The analysis revealed that SVR surpassed the others with a linear kernel (C=10) achieving the lowest MSE rates of 0.26, while DTR, RFR, and XGBoost earned significantly higher 3.375, 2.857, and 3.857 (MSEs). The other models lagged behind SVR because SVR was more effective in capturing linear relations and managing overfitting, a dominating issue with decision-tree based models. This points out another important aspect of predictive maintenance (PdM) : the appropriate machine learning technique plays a very important role in accurately predicting fuel consumption of heavy trucks, which improves precision and fuel efficiency.
Modern Ethnomathematics Mainstreaming through Mathematics Entrepreneurship Using Mathematical Ornaments Parhusip, Hanna Arini; Purnomo, Hindriyanto Dwi; Nugroho, Didit Budi; Sri Kawuryan, Istiarsi Saptuti Sri
International Journal on Emerging Mathematics Education IJEME, Vol. 5 No. 2, September 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/ijeme.v5i2.15118

Abstract

Modern ethnomathematics is proposed in this article by introducing curves and surfaces to objects based on commonly used mathematics. There are 2 types of objects, batik and ornament. The object is known as Batima, which means a mathematical motif made in a batik stamp. The same design can be used to design ornaments, souvenirs, accessories or other household items such as glasses, t-shirts and other materials. The formation of ethnomathematics is driven by entrepreneurial activities. The method starts with the expansion of the circular and spherical equations based on the variation of the power form which was originally 2 in the equation to be valued at random (say p). The other used equations are parametric equations, especially the hypocycloid which is extended to both curves and surfaces with spherical coordinates. In addition, derivative operators can be applied. Product manufacturing is carried out by at least 10 household businesses around Salatiga and Jogjakarta and its surroundings. In order to sustain the mainstreaming of modern ethnomathematics, entrepreneurial activities are carried out with existing materials through exhibitions and competitions that are followed. Likewise, the use of social media and marketplaces are explored to mainstream the modern ethnomathematics into society.
Learning geometry through surface creation from the hypocycloid curves expansion with derivative operators for ornaments Parhusip, Hanna Arini; Purnomo, Hindriyanto Dwi; Nugroho, Didit Budi; Kawuryan, Istiarsi Saptuti Sri
Desimal: Jurnal Matematika Vol. 4 No. 1 (2021): Desimal: Jurnal Matematika
Publisher : Universitas Islam Negeri Raden Intan Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24042/djm.v4i1.7385

Abstract

Geometry is one of the particular problems for students. Therefore, several methods have been developed to attract students to learn geometry. For undergraduate students, learning geometry through surface visualization is introduced. One topic is studying parametric curves called the hypocycloid curve. This paper presents the generalization of the hypocycloid curve. The curve is known in calculus and usually is not studied further. Therefore, the research's novelty is introducing the spherical coordinate to the equation to obtain new surfaces. Initially, two parameters are indicating the radius of 2 circles governing the curves in the hypocycloid equations. The generalization idea here means that the physical meaning of parameters is not considered allowing any real numbers, including negative values. Hence, many new curves are observed infinitely. After implementing the spherical coordinates to the equations and varying the parameters, various surfaces had been obtained. Additionally, the differential operator was also implemented to have several other new curves and surfaces. The obtained surfaces are useful for learning by creating ornaments. Some examples of ornaments are presented in this paper.
Co-Authors A.A. Ketut Agung Cahyawan W Adi Setiawan Adi Setiawan Adrianus Herry Heriadi Alfagustina, Yumita Cristin ALOYSIUS JOAKIM FERNANDEZ Ambat, Jordi Enal Ariany Mahastanti, Linda Atyanta Nika Rukmasari Bambang Susanto Bambang Susanto Beni Utomo Bernadus Aryo Adhi Wicaksono Carolina Febe Ronicha Putri Denny Indrajaya Denny Indrajaya Didit Budi Nugroho Djoko Hartanto Djoko Hartanto Endang Warsiki Fachrurrozi Fachrurrozi Fachrurrozi Faldy Tita Fetriks Theo Sarita Fika Widya Pratama Fitri, Nirmala Ayu Andika Goni, Abdiel Wilyar Hariadi, Adrianus Herry Heriadi, Adrianus Herry Hindriyanto Dwi Purnomo Indrajaya, Denny Istiarsi Saptuti Sri Kawuryan Istiarsih Saputri Sri Kawuryan Jane Labadin Johanes Dian Kurniawan Johanes Dian Kurniawan Karina Bianca Lewerissa Kristia Anggraeni Kristoko Dwi Hartomo Kurniawan, Johanes Dian Lea, Lea Leopoldus Ricky Sasongko Lilik Linawati Linda Ariany Mahastanti Mauliddha Rachmi Mitha Febby R. Donggori Mitha Febby R. Donggori Nafisah Riskya Hasna Nugroho Dwi Susanto Obed Christian Dimitrio Om Prakash Vyas Parung, Ratu Anggriani Tangke Petrus Priyo Santosa Pradani, Wynona Adita Puput Retno Muninggar Purwoko, Agus Puspasari, Magdalena Dwi Rudhito, Andy Santosa, Petrus Priyo Sari, Devina Intan Sri Kawuryan, Istiarsi Saptuti Sri Suryasatriya Trihandaru Susetyo, Yosia Adi Theo Sarita, Fetriks Titilias, Y A Veny M Ningtyas Wijaya, Melina Tito Wijayanti, Yunita Puput Winarto, Eduardus Albert Wulandari, Nadya Putri Yohanes Sardjono Yohanes Sardjono Yohanes Sardjono, Yohanes Yusuf Kurniawan