p-Index From 2021 - 2026
5.083
P-Index
This Author published in this journals
All Journal IAES International Journal of Artificial Intelligence (IJ-AI) dCartesian: Jurnal Matematika dan Aplikasi MATEMATIKA Jurnal Ilmu Lingkungan Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Indonesian Journal of Mathematics and Natural Sciences Kreano, Jurnal Matematika Kreatif-Inovatif Jurnal Teknologi Informasi dan Ilmu Komputer JUITA : Jurnal Informatika International Journal of Advances in Intelligent Informatics Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika Jurnal Fourier JOIN (Jurnal Online Informatika) Science and Technology Indonesia JOIV : International Journal on Informatics Visualization Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Jurnal Penelitian Pendidikan IPA (JPPIPA) Desimal: Jurnal Matematika BAREKENG: Jurnal Ilmu Matematika dan Terapan JTAM (Jurnal Teori dan Aplikasi Matematika) International Journal of Computing Science and Applied Mathematics International Journal on Emerging Mathematics Education SJME (Supremum Journal of Mathematics Education) Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Journal on Education Jambura Journal of Mathematics ComTech: Computer, Mathematics and Engineering Applications KAIBON ABHINAYA : JURNAL PENGABDIAN MASYARAKAT Jurnal Abdi Insani Indonesian Journal of Electrical Engineering and Computer Science Jurnal Sains dan Edukasi Sains Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) Jurnal Teknik Informatika (JUTIF) Journal of Science and Science Education International Journal of Community Service Jurnal Ilmiah Sains Prosiding Konferensi Nasional Penelitian Matematika dan Pembelajarannya d'Cartesian: Jurnal Matematika dan Aplikasi JuTISI (Jurnal Teknik Informatika dan Sistem Informasi) Limits: Journal of Mathematics and Its Applications SJME (Supremum Journal of Mathematics Education) Lontar Komputer: Jurnal Ilmiah Teknologi Informasi
Claim Missing Document
Check
Articles

Selection Dominant Features Using Principal Component Analysis for Predictive Maintenance of Heave Engines Trihandaru, Suryasatriya; Parhusip, Hanna Arini; Heriadi, Adrianus Herry; Santosa, Petrus Priyo; Sardjono, Yohanes; Lea, Lea
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 4 (2024): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i4.22854

Abstract

This article aims to identify the dominant features that have a significant impact on the health of a heavy machine that relates to the digital infrastructure of a company. The importance of this research is that the authors define predictive maintenance based on Principal Component Analysis (PCA), which is the novelty of this article. The novel contribution of this research lies in the application of Principal Component Analysis (PCA) for predictive maintenance of heavy machinery, which has not been integrated into the Scheduled Oil Sampling (SOS) procedures. The recorded data are called Scheduled Oil Sampling (SOS) and historical data from an equipment called CoreDataQ, which works for recording many features from heavy machine activities. The data contain two sets data. The method is Principal Component Analysis (PCA). This method leads to obtain a maximum of 20 significant features on data based on SOS. The results have been confirmed and agreed upon by the manager who owned CoreDataQ to consider the selected dominant features for further related maintenance. 
Improvement of Real-GJR Model using Jump Variables on High Frequency Data Nugroho, Didit Budi; Wulandari, Nadya Putri; Alfagustina, Yumita Cristin; Parhusip, Hanna Arini; Tita, Faldy; Susanto, Bambang
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 8, No 4 (2024): October
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v8i4.24294

Abstract

Volatility is a key indicator in assessing risk when making investment decisions. In the world of financial markets, volatility reflects the degree to which the value of a financial asset fluctuates over a given period. The most common way to measure the future loss potential of an investment is through volatility. Focusing on the Realized GJR (RealGJR) volatility model, which consists of return, conditional volatility, and measurement equations, this study proposes the RealGJR-CJ model developed by decomposing the exogenous variable in the volatility equation of RealGJR into continuous C and discontinuous (jump) J variables. The decomposition of exogenous variables makes the RealGJR-CJ model follow realistic financial markets, where the asset volatility is a continuous process with some jump components. As an empirical illustration, the models are applied to an index in the Japanese stock market, namely Tokyo Stock Price Index, covering from January 2004 to December 2011. The observed exogenous variable in the volatility equation of RealGJR models is Realized Volatility (RV), which is calculated using intraday data with time intervals of 1 and 5 minutes. Adaptive Random Walk Metropolis method was employed in Markov Chain Monte Carlo algorithm to estimate the model parameters by updating the parameters during sampling based on previous samples from the chain. From the results of running the MCMC algorithm 20 times, the mean of the information criteria of competing models is significantly different based on standard deviation and the result suggests that the model with continuous and jump variables can improve the model without jump. The best fit model is provided by RealGJR-CJ with the adoption of 1-minute RV data. 
PENGUJIAN NESS-APP UNTUK DETEKSI SARANG BURUNG WALET TESTING OF NESS-APP FOR DETECTING SWIFTLET NESTS Parhusip, Hanna Arini; Trihandaru, Suryasatriya; Indrajaya, Denny; Hartomo, Kristoko Dwi; Lewerissa, Karina Bianca; Mahastanti, Linda Ariany
Jurnal Abdi Insani Vol 11 No 4 (2024): Jurnal Abdi Insani
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/abdiinsani.v11i4.1786

Abstract

This article discusses the development and testing of the Ness-App application, designed to detect and assess the quality of swallow nests effectively and efficiently. The main issue addressed is the difficulty in determining the quality of swallow nests through photos or videos in buying and selling transactions. The purpose of this research is to develop an Android application using object detection technology to assist PT. Waleta Asia Jaya in assessing the quality of swallow nests. The method used involves creating an object detection model using Convolutional Neural Network (CNN) and SSD MobileNet architecture. The results indicate that the Ness-App application can improve transaction efficiency and quality, providing a better understanding of swallow nest conditions for collectors and farmers. In conclusion, Ness-App supports digitalization and technological advancement in the swallow nest industry by providing an effective tool for quality assessment and accelerating the transaction process.
WORKSHOP PERSIAPAN PEMBELAJARAN MATEMATIKA DENGAN BANTUAN PAKET PROGRAM KOMPUTER (GEOGEBRA/R) UNTUK MGMP MATEMATIKA SMA KABUPATEN SEMARANG JAWA TENGAH Setiawan, Adi; Parhusip, Hanna Arini; Nugroho, Didit Budi; Sasongko, Leopoldus Ricky; Rudhito, Andy; Utomo, Beni; Fernandez, Aloysius Joakim
Jurnal Abdi Insani Vol 12 No 2 (2025): Jurnal Abdi Insani
Publisher : Universitas Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29303/abdiinsani.v12i2.2046

Abstract

The world is heading towards the era of Society 5.0, which requires learning Mathematics as much as possible to be easy to understand and interesting for students. Technology-based visualization, such as the use of Geogebra, can help students understand Mathematics formulas better. Therefore, teachers who are members of the High School Mathematics MGMP need to have insight into the importance of technology-based learning as a strategy to improve teaching quality. This activity aims to open teachers' insights into visualization and technology-based Mathematics learning, and help them develop creative learning modules and tools. The activity method includes four meetings consisting of webinars and workshops. The first webinar contains an introduction to the importance of visualization-based learning; the second webinar provides training in using Geogebra/R onsite or hybrid; the third webinar trains the creation of learning modules; and the fourth webinar presents the theory of writing scientific papers and using Mendeley. The results show that teachers are able to make creative and interesting lesson plans and learning modules using Geogebra/R, and motivate students to learn Mathematics independently or in groups. Some of the modules produced have been tested at school, although none of the participants have succeeded in making papers ready for publication. This activity succeeded in improving the ability of teachers to utilize technology for learning Mathematics.
AI-Enhanced Production Planning: Integrating LSTM Forecasting with Linear Programming Winarto, Eduardus Albert; Parhusip, Hanna Arini; Trihandaru, Suryasatriya
Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Vol 10, No 2 (2025): Edisi Agustus
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/jurasik.v10i2.924

Abstract

Efficient production planning is crucial in the manufacturing industry, including in the paper sector, where fluctuating demand and limited production capacity pose significant challenges. This study introduces an intelligent optimization system that integrates demand forecasting using Long Short-Term Memory (LSTM) with production scheduling optimization through Linear Programming (LP) in Pyomo. The LSTM model processes historical order data to predict demand for the next 30 days, which is then used as input for the LP model to generate an optimal production schedule while considering machine capacity and operational time constraints. The experimental results indicate that the LSTM model achieves a prediction error (loss) of approximately 0.032, demonstrating high accuracy in capturing demand patterns. Meanwhile, the LP model implemented in Pyomo efficiently allocates production time, ensuring that machine utilization is optimized without exceeding the available working hours. By integrating these approaches, companies can minimize the risks of overproduction and stockouts while maximizing resource efficiency. Furthermore, this method enhances decision-making processes by providing data-driven insights into production scheduling and inventory management. The proposed framework offers a scalable solution for improving operational performance in the paper industry, enabling companies to respond more effectively to market fluctuations and optimize their supply chain strategies.
ANALISIS REGRESI NON LINEAR PADA DATA PASIEN COVID-19 MENGGUNAKAN METODE BOOTSRAP Pradani, Wynona Adita; Setiawan, Adi; Parhusip, Hanna Arini
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (606.139 KB) | DOI: 10.30598/barekengvol15iss3pp453-466

Abstract

Dalam penelitian ini membahas tentang analisis regresi non linier dengan menggunakan data statistic perkembangan pasien positif Covid-19 di Indonesia. Penyakit Covid-19 sangat mudah berkembang penyebarannya sehingga WHO menyatakan penyakit ini sebagai pandemi, dalam penelitian ini menggunakan lima model analisis regresi non linier yaitu model Weibull 3 parameter, Gompertz 3 parameter, Log-logistic 3 parameter, Log-Logistic 4 parameter dan model Logistic 3 parameter. Analisis yang terbaik dalam memprediksi yaitu Log-logistic 3 parameter dengan nilai AIC = 6527.434 dan RMSE = 6836.79, dan diperoleh nilai parameter , dan A= 19477000, sehingga pengestimasian parameter dengan menggunakan metode Bootstrap B = 10000 dengan interval kepercayaan 95% untuk parameter , dan A berturut-turut adalah maka diperoleh nilai rata-rata estimas Bootstrap , dan . Pada data prediksi pasien yang positif Covid-19 akan dibandingkan dengan data pengamatan, dari hasil perbandingan diperoleh nilai MAPE = 9%, sehingga dapat dikatakan pemodelan Log-logistic 3 parameter sangat baik dalam memprediksi.
MATHEMATICAL SILVER FOR ENTREPRENEURIAL MATHEMATICS Parhusip, Hanna Arini; Nugroho, Didit Budi; Purnomo, Hindriyanto Dwi; Kawuryan, Istiarsi Saptuti Sri
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (472.285 KB) | DOI: 10.30598/barekengvol16iss4pp1175-1184

Abstract

This article shows the result of entrepreneur mathematics by creating mathematical objects from silver. The objects discussed here are accessories to introduce undergraduate students to integrating several aspects of learning mathematics. These are learning geometry modernly, mathematical art, popularizing mathematics for society, introducing entrepreneurial values using mathematics, teamwork for achieving targets, and considering local heritage in mathematics. These aspects are blended into activity by creating designs and producing products based on the obtained designs. The particular product for this activity is creating silver accessories. The used research method is initiated by creating designs with the help of software where the surface equations are known. After the designs are obtained, the designs are communicated to the silver craftsman to be a partner in design testing and manufacturing of accessories products using the given designs. The size and the similarity of perceptions to the appearance of the design are discussed because the actual design is a three-dimensional image but expressed in objects to be two- dimensional objects. After productions are obtained, the accessories are managed to be promoted to the marketplace and social media as a form of entrepreneurial activity with materials starting from mathematics.
Model Regresi untuk Return Aset dengan Volatilitas Mengikuti Model GARCH(1,1) Berdistribusi Epsilon-Skew Normal dan Student-t Didit Budi Nugroho; Kristia Anggraeni; Hanna Arini Parhusip
Limits: Journal of Mathematics and Its Applications Vol. 17 No. 2 (2020): Limits: Journal of Mathematics and Its Applications Volume 17 Nomor 2 Edisi De
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Studi ini mendiskusikan dua perluasan dari model GARCH(1,1), yaitu AR(1)-GARCH(1,1) dan MA(1)-GARCH(1,1), yang diperoleh dengan cara menambahkan Autoregression tingkat 1 atau Moving Average tingkat 1 pada persamaan return . Untuk kasus ini, error dari return diasumsikan berdistribusi Normal, Skew Normal (SN), Epsilon Skew Normal (ESN), dan Student- t . Analisis terhadap model didasarkan pada pencocokan model untuk return dari indeks saham FTSE100 periode harian dari Januari 2000 sampai Desember 2017 dan indeks saham TOPIX periode harian dari Januari 2000 sampai Desember 2014. Model yang dipelajari diestimasi menggunakan metode GRG ( Generalized Reduced Gradient ) Non Linear yang tersedia di Solver Excel dan juga metode Adaptive Random Walk Metropolis (ARWM) yang diimplementasikan pada program Scilab. Hasil estimasi dari kedua alat bantu tersebut menunjukkan nilai-nilai yang hampir sama, mengindikasikan bahwa Solver Excel mempunyai kemampuan yang handal dalam mengestimasi parameter model. Uji rasio log- likelihood dan AIC ( Akaike Information Criterion ) menunjukkan bahwa model dengan distribusi ESN lebih unggul dibandingkan dengan model-model berdistribusi tipe normal lainnya untuk setiap kasus model dan data pengamatan, bahkan ini bisa mengungguli distribusi Student- t pada suatu model dan data pengamatan. Lebih lanjut, model-model dengan penambahan proses regresi di persamaan return menyediakan pencocokan yang lebih baik daripada model dasar, dimana pencocokan terbaik untuk kedua data pengamatan diberikan oleh model AR(1)-GARCH(1,1) berdistribusi Student- t .
Automated Property Valuation with Multi-Hazard Risk: Jakarta Metropolitan Area Study Fachrurrozi, Fachrurrozi; Parhusip, Hanna Arini; Trihandaru, Suryasatriya
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.5236

Abstract

This study crafts a machine learning framework that systematically integrates multi-hazard disaster risk assessments into automated property valuation for the Jakarta Metropolitan Area. The framework addresses 25–30% MAPE typically observed in disaster-prone regions, providing more reliable valuation results. We made 114 prediction features from 42 input variables by using 14,284 property data from Indonesian markets, physical risk data from the Think Hazard platform, and socio-economic data from Central Bureau of Statistics. Elastic Net model performed superior compared to other models which had R² = 0.7922 and a MAPE of 28.27%. We found that some disaster risks had unexpected beneficial effects on property prices. We expected that risks related to the earth (+40.5%) and water (+19.2%) would have positive effects, while risks related to the weather (-66.9%) would have negative effects. These conflicting results suggest that in complex urban markets, the quality of infrastructure, location premiums, and differences in risk perception may outweigh simple risk penalties. The idea gives realistic ideas for property valuation that takes risks into account, but it also points out big problems with how the market judges how likely a disaster is to happen.
Penentuan Dua Lokasi Lumbung Padi dengan Menggunakan Metode Grid di Provinsi Kalimantan Tengah Wijayanti, Yunita Puput; Setiawan, Adi; Parhusip, Hanna Arini
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 6 No 6: Desember 2019
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3401.41 KB) | DOI: 10.25126/jtiik.2019661750

Abstract

Perancangan lokasi pendistribusian pangan merupakan salah satu kegiatan yang dilakukan pemerintah untuk memenuhi kebutuhan pokok pangan masyarakat yang bisa berubah secara dinamis dari waktu ke waktu. Metode Grid diaplikasikan dalam penelitian ini untuk menentukan lokasi yang tepat untuk lumbung padi dalam upaya pendistribusian bahan pangan di Provinsi Kalimantan Tengah dengan memperhatikan jarak dan biaya transportasi. Tidak hanya itu, dengan bantuan metode grid untuk penentuan kandidat lokasi lumbung padi juga membantu dalam proses penelitian. Berdasarkan data yang berupa koordinat lokasi kantor kabupaten, jumlah penduduk, dan banyaknya produksi padi di Provinsi Kalimantan Tengah dapat diperoleh dua lokasi lumbung padi terdapat pada koordinat geografis (-1.8,113.0) tepatnya di Desa Koeling, Kecamatan Pundu, Kabupaten Kotawaringin Timur, Kalimantan Tengah dan (-3.0,114.2) tepatnya di Desa Pangkuh, Kecamatan Pangkoh Hilir, Kabupaten Pulang Pisau, Kalimantan Tengah dengan total cost sebesar Rp. 55,287,393.08. AbstractThe design of food distribution location is one of the goverment activity to fulfill the main need of society that can change dynamically over time. The Grid  method was applied in this study to determine the exact location the granary for the distribution of food in Central Borneo Province by pay attention distance and transportation cost. Not only that, with the help of the grid method for determining candidates for granary locations it also help in the research process. Based on the data in the form of the coordinates of the location of the district office, population, and the amount of rice production in Central Borneo Province, two granary locations are located at the geographical coordinates (-1.8,113.0) precisely in Koeling Village, Pundu Sub-district, East Kotawaringin District, Central Borneo, and (-3.0,114.2) precisely in Pangkuh Village, Pangkoh Hilir Sub-district, Pulang Pisau District, Central Borneo with a total cost Rp. 55,287,393.08.
Co-Authors A.A. Ketut Agung Cahyawan W Adi Setiawan Adi Setiawan Adrianus Herry Heriadi Alfagustina, Yumita Cristin ALOYSIUS JOAKIM FERNANDEZ Ambat, Jordi Enal Ariany Mahastanti, Linda Atyanta Nika Rukmasari Bambang Susanto Bambang Susanto Beni Utomo Bernadus Aryo Adhi Wicaksono Carolina Febe Ronicha Putri Denny Indrajaya Denny Indrajaya Didit Budi Nugroho Djoko Hartanto Djoko Hartanto Endang Warsiki Fachrurrozi Fachrurrozi Fachrurrozi Faldy Tita Fetriks Theo Sarita Fika Widya Pratama Fitri, Nirmala Ayu Andika Goni, Abdiel Wilyar Hariadi, Adrianus Herry Heriadi, Adrianus Herry Hindriyanto Dwi Purnomo Indrajaya, Denny Istiarsi Saptuti Sri Kawuryan Istiarsih Saputri Sri Kawuryan Jane Labadin Johanes Dian Kurniawan Johanes Dian Kurniawan Karina Bianca Lewerissa Kristia Anggraeni Kristoko Dwi Hartomo Kurniawan, Johanes Dian Lea, Lea Leopoldus Ricky Sasongko Lilik Linawati Linda Ariany Mahastanti Mauliddha Rachmi Mitha Febby R. Donggori Mitha Febby R. Donggori Nafisah Riskya Hasna Nugroho Dwi Susanto Obed Christian Dimitrio Om Prakash Vyas Parung, Ratu Anggriani Tangke Petrus Priyo Santosa Pradani, Wynona Adita Puput Retno Muninggar Purwoko, Agus Puspasari, Magdalena Dwi Rudhito, Andy Santosa, Petrus Priyo Sari, Devina Intan Sri Kawuryan, Istiarsi Saptuti Sri Suryasatriya Trihandaru Susetyo, Yosia Adi Theo Sarita, Fetriks Titilias, Y A Veny M Ningtyas Wijaya, Melina Tito Wijayanti, Yunita Puput Winarto, Eduardus Albert Wulandari, Nadya Putri Yohanes Sardjono Yohanes Sardjono Yohanes Sardjono, Yohanes Yusuf Kurniawan