Claim Missing Document
Check
Articles

Found 22 Documents
Search

PENGEMBANGAN SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN HEADLINE BERITA MENGGUNAKAN ROC DAN MOORA Bella Vista, Candra; Veronica Elyzabeth Islami, Ratu; Nur Hamdana, Elok
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 1 (2025): JATI Vol. 9 No. 1
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i1.12323

Abstract

Teknologi semakin berkembang menuntut masyarakat untuk memanfaatkannya agar informasi diperoleh dengan mudah dan cepat. Times Indonesia merupakan portal berita daring yang memuat berita terbaru terkait peristiwa, cek fakta, politik, entertainment, gaya hidup, wisata, kopi times, hingga e- koran. Masalah yang dihadapi adalah penentuan prioritas headline, karena dilakukan secara asal dan belum tersistematis. Banyaknya berita mempengaruhi proses penyeleksiannya, karena tidak semua berita dapat menjadi headline. Terdapat perdebatan pada pemilihan headline oleh redaksi. Pemilihan headline yang kurang baik mengakibatkan ketidaktepatan dalam menentukan prioritas berita. Sistem Pendukung Keputusan dijadikan solusi untuk memudahkan memilih headline berita. Kombinasi metode Rank Order Centroid (ROC) dan Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) untuk pengambilan keputusan dengan mempertimbangkan beberapa kriteria secara simultan, penentuan nilai bobot juga secara tersistem. Hasil penelitian menujukkan sistem berjalan sesuai dengan fungsinya. Hasil perangkingan tertinggi didapat oleh A7 bernilai 0,215. Berdasarkan pengujian menggunakan UAT, tingkat kepuasan pengguna sebesar 79,83%. Berarti pengguna setuju bahwa dengan adanya sistem membantu dalam pemilihan headline berita. Pengujian menilai akurasi dengan membandingkan hasil perhitungan manual dan sistem pada 20 data alternatif, menghasilkan 100% akurasi. Penilaian performa sistem dengan membandingkan hasil perangkingan dengan pendapat pakar atau editor menggunakan 10 data teratas mendapatkan tingkat kebenaran sebesar 86,67%.
RANCANG BANGUN SISTEM INFORMASI BERBASIS EXTREME PROGRAMMING UNTUK TRANSPARANSI PENGELOLAAN DONASI PANTI ASUHAN Septa Sintiya, Endah; Bella Vista, Candra; Wahyu Wibowo, Dimas; Kusumawardana, Arya; Cahaya Puspitaningrum, Ari
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 9 No. 1 (2025): JATI Vol. 9 No. 1
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v9i1.12328

Abstract

Tantangan hingga saat ini bahwa panti asuhan kesulitan dalam pengelolaan data anak asuh, pencatatan donasi, serta pelaporan keuangan seringkali dilakukan secara manual. Hal ini rentan terhadap kesalahan dan memakan waktu yang lama untuk pencarian hingga pelaporan. Panti asuhan memerlukan dukungan karena mempunyai tujuan mulia dalam membantu anak-anak yatim piatu dan kaum dhuafa seperti yang dilakukan panti asuhan Mawaddah Warohmah. Tujuan penelitian ini melakukan implementasi sistem Big Data, panti asuhan agar dapat mengumpulkan, menyimpan, dan menganalisis data dalam jumlah besar dari berbagai sumber donasi. Penerapan pengelolaan Big Data diharapkan dapat meningkatkan profesionalisme dan kepercayaan masyarakat terhadap panti asuhan, serta memaksimalkan pemanfaatan donasi untuk kesejahteraan anak asuhan. Metode yang digunakan yaitu extreme programming dengan tahap Planning, Design, Coding dan Testing. Hasil pengembangan sistem informasi berisikan fitur lengkap dengan pengelolaan acara panti, dana donatur dan administrasi dengan menggunakan framework Laravel berbasis MVC yang memudahkan dalam manajemen website yang digunakan. Hasil Pengujian fungsional (BlackBox) terbukti sesuai atau valid, dan User Acceptance Testing (UAT) dengan presentase 96,8% hal ini terbukti sistem ini membantu dalam pengelolaan administrasi dan donasi kegiatan panti asuhan.
Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular Sabilla, Wilda Imama; Vista, Candra Bella; Hormansyah, Dhebys Suryani
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.425

Abstract

Cardiovascular disease is one of the leading causes of death in the world. The risk of death is important to predict to determine treatment or behavior and lifestyle changes in cardiovascular patients. Medical record data of cardiovascular patients can be used as input in predicting life expectancy. This study offers the construction of a life expectancy prediction system for cardiovascular patients. Prediction using multilayer perceptron method by testing various scenarios. In addition, feature selection methods, namely correlation based filter (CBF), linear discriminant analysis (LDA), and principal component analysis (PCA) are applied to obtain relevant features to improve classification performance. Based on the experiments conducted, the average accuracy using CBF and LDA feature selection is 84% and 84.7%, respectively. In the best trial, CBF is able to produce accuracy, precision, recall, and f-measure with value of 91.7% 85% 89.5% and 87.2%. Based on these results, it can be concluded that this prediction system is able to provide fairly accurate results
Implementasi Multilayer Perceptron Untuk Memprediksi Harapan Hidup Pada Pasien Penyakit Kardiovaskular Sabilla, Wilda Imama; Vista, Candra Bella; Hormansyah, Dhebys Suryani
J-SAKTI (Jurnal Sains Komputer dan Informatika) Vol 6, No 1 (2022): EDISI MARET
Publisher : STIKOM Tunas Bangsa Pematangsiantar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/j-sakti.v6i1.425

Abstract

Cardiovascular disease is one of the leading causes of death in the world. The risk of death is important to predict to determine treatment or behavior and lifestyle changes in cardiovascular patients. Medical record data of cardiovascular patients can be used as input in predicting life expectancy. This study offers the construction of a life expectancy prediction system for cardiovascular patients. Prediction using multilayer perceptron method by testing various scenarios. In addition, feature selection methods, namely correlation based filter (CBF), linear discriminant analysis (LDA), and principal component analysis (PCA) are applied to obtain relevant features to improve classification performance. Based on the experiments conducted, the average accuracy using CBF and LDA feature selection is 84% and 84.7%, respectively. In the best trial, CBF is able to produce accuracy, precision, recall, and f-measure with value of 91.7% 85% 89.5% and 87.2%. Based on these results, it can be concluded that this prediction system is able to provide fairly accurate results
Development of a Web-Based SQL Query Online Examination System with Automated Grading Using the MVC Design Pattern Yunhasnawa, Yoppy; Windawati, Atif; Cinderatama, Toga Aldila; Vista, Candra Bella; Abdullah, Moch. Zawaruddin
International Journal Software Engineering and Computer Science (IJSECS) Vol. 4 No. 3 (2024): DECEMBER 2024
Publisher : Lembaga Komunitas Informasi Teknologi Aceh (KITA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/ijsecs.v4i3.3285

Abstract

In this study, the Researchers provide the design, development, and evaluation of a web-based SQL exam system that utilizes the Model-View-Controller (MVC) architectural pattern to enhance automated grading functionality and ease of maintenance. The main objectives of the system are to simplify the process of administering SQL exams, to make it user-friendly for students to enter their SQL statements, and as a means for teachers to automate the grading process. This allows a clear separation between three separate modules: Model to manage data, View to present the application to users, and Controller to manage the application logic. This separation allows for modular development, easier maintenance, and code reuse. The fundamental aspect of the system lies in its automated grading mechanism, which intelligently compares the SQL queries submitted by students with the corresponding validated answer keys stored in the database. Extensive black-box testing was conducted to ensure the reliability and accuracy of the system with various test cases to assess its ability to assess responses and provide real-time feedback to students, in addition to smooth and intuitive navigation within the system. All testing criteria yielded successful results with 100% agreement proving the robustness of the system with all possible locations that could potentially be used in higher education structures. The system provides a scalable and flexible approach to address the challenges associated with SQL assessment in academic institutions, thereby facilitating uniform, efficient, and objective evaluation standards. The system uses data up to October 2023 to prevent the model from becoming obsolete
Spatio-Temporal Pattern Analysis of Forest Fire in Malang based on Remote Sensing using K-Means Clustering Kirana, Annisa Puspa; Astiningrum, Mungki; Vista, Candra Bella; Bhawiyuga, Adhitya; Amrozi, Aris Nur
International Journal of Multidisciplinary: Applied Business and Education Research Vol. 4 No. 8 (2023): International Journal of Multidisciplinary: Applied Business and Education Rese
Publisher : Future Science / FSH-PH Publications

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11594/ijmaber.04.08.37

Abstract

Forest and land fire significantly impact the balance of the environment, such as haze pollution, destruction of ecosystems, the high release of carbon in the air, deterioration of health, and losses in various other fields. Based on these factors, developing an early warning system is essential to prevent forest fires, especially in forest and land areas. One of the data that can be used to monitor areas where there are frequent fires is hotspot data taken from the NASA MODIS Fire satellite. Data mining techniques are carried out to process the hotspot data so that the distribution of hotspot swarms is obtained. The data on the distribution of the clustering of hotspots are used to detect areas that are prone to fire from year to year. This study used the K-Means clustering algorithm. The data used in this study is hotspot data from Malang District, Indonesia. The range of hotspot data from January 2018 to June 2022. We use Silhouette coefficient testing to get the best number of classes in the cluster—this study's most recent application of the K-means clustering method to analyze hotspot distribution in a spatial-temporally. We use hotspot data in Malang's forest and land area using hotspot confidence levels >80%.
Perancangan Dashboard Monitoring dan Evaluasi Data Mahasiswa Jurusan Teknologi Informasi menggunakan Metode Design Thinking Astiningrum, Mungki; Vista, Candra Bella; Wakhidah, Rokhimatul
Prosiding Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika (SNESTIK) 2025: SNESTIK V
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/p.snestik.2025.7260

Abstract

Data is the most valuable commodity. Data management is not only a necessity but also a crucial foundation in responding to and optimizing the potential of an organization, including the Information Technology Department of Malang State Polytechnic. The Information Technology Department has a data volume continues to increase significantly, one related to student data. No system can display student data concisely, making the monitoring and evaluation process difficult, for such as accreditation. The development of a dashboard for monitoring and evaluating student data in the Information Technology Department is a strategic step to increase the effectiveness of data management. The dashboard provides a visualization interface that allows for fast and efficient data monitoring and analysis. This study uses the design thinking method. This approach is suitable because users are involved in ensuring that the dashboard is designed according to needs so that it can support data-based decision-making. The user acceptance test method aims to assess several parameters, including information, design, use, and user loyalty. The test results showed that 89% of respondents agreed that the dashboard was considered feasible and met the assessment criteria based on the parameters tested.
Pelatihan Pemasaran Digital melalui Pemanfaatan Aplikasi Online Marketplace bagi UMKM di Lapak Berkah PKK Singosari Malang Habibie Ed Dien; Candra Bella Vista; Wilda Imama Sabilla; Vit Zuraida; Ariadi Retno Tri Hayati Ririd
Jurnal Pengabdian UNDIKMA Vol. 3 No. 3 (2022): November
Publisher : LPPM Universitas Pendidikan Mandalika (UNDIKMA)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33394/jpu.v3i3.6030

Abstract

The purpose of this service activity is to increase knowledge and skills for Micro, Small, and Medium Enterprises (UMKM) actors to be able to do digital marketing through online marketplace applications. The service method uses training with partners, namely the UMKM Blessing PKK in Toyomarto Village, Singosari District, Malang Regency. This service evaluation instrument uses a questionnaire. The data analysis technique used a descriptive technique. The result of this community service shows that the training activities carried out are in accordance with the objectives to be achieved, namely providing an understanding of digital marketing and the ability to use online marketplace applications, so as to optimize product marketing for UMKM actors.
Implementasi Machine Learning dalam Sistem Prediksi dan Rekomendasi Program Diet Terintegrasi LLM Sintiya, Endah Septa; Amanda, Sely Ruli; Bella Vista, Candra; Nugroho Pramudhita, Agung
Jurnal Nasional Teknologi dan Sistem Informasi Vol 11 No 2 (2025): Agustus 2025
Publisher : Departemen Sistem Informasi, Fakultas Teknologi Informasi, Universitas Andalas

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/TEKNOSI.v11i2.2025.144-151

Abstract

Malnutrition, both in the form of overweight and underweight, remains a global health challenge. Unhealthy urban lifestyles and limited access to appropriate nutritional interventions exacerbate this problem. Technology-based approaches such as machine learning and Large Language Models (LLM) offer opportunities to improve the effectiveness of dietary management. This study proposes the development of a machine learning-based and LLM-integrated diet program prediction and recommendation system applied to Cafe NUT Castle. The system was developed to digitize body composition data recording, predict diet programs (weight loss, weight gain, and body fat loss) using the Random Forest algorithm, and generate personalized initial diet recommendations through the integration of the Gemini Flash-Lite API. Based on the test results, the prediction model achieved an accuracy of 93% on the test data and 84% on 50 new datasets. Evaluation of the diet recommendations generated by LLM showed a feasibility level of 86.6% which was categorized as very feasible. These results indicate that the developed system is not only accurate in predicting diet programs but also effective in providing initial recommendations that can support decision-making in digital nutrition consultation services.
Rancang Bangun Sistem Informasi Perpustakaan Berbasis Website di SMAN Ploso Menggunakan Algoritma Apriori Vista, Candra Bella; Nugraha, Girindra Fajar; Cinderatama, Toga Aldila
Jurnal Informatika Polinema Vol. 10 No. 2 (2024): Vol 10 No 2 (2024)
Publisher : UPT P2M State Polytechnic of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33795/jip.v10i2.5000

Abstract

Proses manajemen seperti pencatatan peminjaman, pengembalian, dan inventaris buku yang ada di Perpustakaan SMAN Ploso masih menggunakan proses pencatatan pada buku. Selain itu, proses pengembalian buku belum terorganisir dengan baik, karena masih terdapat anggota perpustakaan yang mengembalikan buku pada rak yang tidak semestinya. Maka dari itu, sistem ini dibuat bertujuan untuk memberikan kemudahan dalam proses pengelolaan data perpustakaan dan memberikan rekomendasi penempatan buku dan pengadaan buku berdasarkan pola peminjaman. Sistem ini memiliki fitur pengelolaan data perpustakaan seperti data buku, anggota, peminjaman, pengembalian, rekomendasi penempatan buku berdasarkan kategori pada data transaksi, rekomendasi pengadaan buku berdasarkan data transaksi, laporan, dan denda. Pada sistem ini admin dapat melakukan perhitungan Algoritma Apriori pada menu penempatan buku dengan memasukkan rentan waktu data peminjaman, nilai minimum support, dan nilai minimum confidence. Berdasarkan pengujian yang dilakukan, admin memasukkan rentan waktu bulan Januari – Februari. Kemudian untuk nilai minimum support sebesar 10% dan nilai minimum confidence sebesar 60%. Berdasarkan analisis yang telah dilakukan, pemilihan nilai minimum support 10% dan nilai minimum confidence 60% memperoleh hasil yang ideal, karena itemset dan aturan asosiasi yang muncul memiliki keterkaitan yang signifikan. Dari nilai-nilai tersebut kemudian diproses oleh sistem dan menghasilkan nilai confidence 4 itemset, di mana masing-masing itemset tersebut memiliki nilai persentase confidence yang telah memenuhi nilai minimum confidence. Dari hasil yang diperoleh kategori kimia dan matematika sebesar 100%, kategori ekonomi dan geografi sebesar 62,5%, kategori geografi dan ekonomi sebesar 83,3%, kategori fisika dan matematika sebesar 80%. Dari hasil nilai confidence tersebut dapat digunakan sebagai rekomendasi penempatan buku maupun pengadaan buku.