Claim Missing Document
Check
Articles

Perbandingan Performansi Pengamanan File Backup LPSE Menggunakan Algoritma DES Dan AES I Putu Agus Eka Darma Udayana; Nyoman Putra Sastra
Jurnal Teknologi Elektro Vol 15 No 1 (2016): (January - June) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MITE.2016.v15i01p19

Abstract

LPSE is a unit established for the purpose of organizing care systems procurement of goods and services electronically to facilitate the scope of work ULP. In the main server LPSE contained important data procurement of goods / services. To maintain the availability of data every transaction and supporting the availability of the system, then the backup server devices are provided. In a process that requires data backup from the primary server to the backup server through a LAN network. In the process of data transfer required a method of ensuring the security of data is maintained. Data security encryption mechanism and descriptions used are DES and AES algorithms. Because of this encryption process, the necessary computing will indirectly membenani server. From the test results, the performance of the backup file on the server security LPSE the AES method is superior to DES method with an average time of 195.4 seconds file encryption 189.1 seconds ahead of DES method. The file size of the generated encryption is also not much different that makes the time required in the backup process is not much different. With less time required in the process of securing, then the server load will be less. DOI: 10.24843/MITE.1501.19
Efektivitas Pesan Teks Dengan Cipher Substitusi, Vigenere Cipher, dan Cipher Transposisi M. Azman Maricar; Nyoman Putra Sastra
Jurnal Teknologi Elektro Vol 17 No 1 (2018): (Januari - April) Majalah Ilmiah Teknologi Elektro
Publisher : Program Studi Magister Teknik Elektro Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/MITE.2018.v17i01.P08

Abstract

Penelitian ini bertujuan untuk mengetahui efektivitas suatu keamanan pesan berbasis teks dengan metode kriptografi klasik seperti Substitusi, Vigenere, dan Transposisi. Dengan penerapan metode kriptografi, diharapkan mampu untuk meminimalisasi terjadinya penyadapan terhadap pesan teks. Ketiga metode tersebut, masing-masing akan di kombinasikan dan dibandingkan efektivitasnya berdasarkan ukuran file dan waktu proses. Terdapat tujuh kombinasi dari ketiga metode tersebut. Hasil pengujian efektivitas didapatkan hasil bahwa, ukuran file terbesar adalah kombinasi Substitusi, Vigenere, dan Transposisi yaitu 11 Kb, sedangkan yang terkecil adalah Substitusi dan juga Vigenere yaitu 5 Kb. Berdasarkan waktu proses terlama adalah Substitusi, Vigenere, dan Transposisi yaitu 1.54 detik, sedangkan yang tercepat adalah Substitusi yaitu 0.37 detik. Dari seluruh kombinasi yang ada, seluruhnya berhasil untuk proses enkripsi dan dekripsi guna mengembalikan cipher text menjadi plain text yang asli.
Spatial-temporal data imputation for predictive modeling in intelligent transportation systems Widi Prasetyo, Yohanes Pracoyo; Linawati, Linawati; Wiharta, Dewa Made; Sastra, Nyoman Putra
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp794-807

Abstract

Data imputation is necessary to overcome data loss in intelligent transportation systems (ITS) due to the many sensors used to monitor traffic conditions. Sensor malfunction, hardware limitations, and technical glitches can lead to incomplete data, potentially leading to errors in traffic data analysis. This analysis investigated spatial-temporal data imputation approaches applied for predictive modeling in ITS. Each approach's strengths, weaknesses, and applicability in the context of ITS are evaluated. We analyzed various imputation approaches involving statistical, machine learning, and combined methods. Statistical methods are more straightforward but could effectively handle modern traffic's complexity. On the other hand, machine learning and combined approaches, such as hybrid convolutional neural network (CNN)- long short-term memory (LSTM), offer more robust capabilities in capturing non-linear patterns present in spatio-temporal data. This research aims to investigate the effectiveness of each approach in overcoming data incompleteness and the accuracy of predicting future traffic conditions with the widespread adoption of IoT, electric vehicles, and autonomous vehicles. The results of this investigation provide an understanding of the most suitable approaches to address the challenges of spatio-temporal data imputation and provide practical guidance for predictive modeling in ITS.
KLASIFIKASI JUDUL BERITA BAHASA INDONESIA MENGGUNAKAN SUPPORT VECTOR MACHINE DAN SELEKSI FITUR MUTUAL INFORMATION I Putu Gede Hendra Suputra; Linawati; Sukadarmika, I Gede; Sastra, Nyoman Putra
Jurnal Pendidikan Teknologi dan Kejuruan Vol. 22 No. 1 (2025): Edisi Januari 2025
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jptkundiksha.v22i1.89158

Abstract

Current information and communication technology has changed the way information is shared, affecting the way people get and deliver news. The number of digital news that continues to increase every day by several news portals poses a challenge, where news is often related to more than one category. From the existing problems, a study was conducted on the classification of online news titles. This study uses the SVM method with mutual information feature selection to classify online news titles. The dataset used is the news title from detik.com using 6 categories, namely finance, travel, health, auto, food, and sport with the number of data per category being 2000 data. The classification process starts from text preprocessing, term weighting using TF-IDF, then feature selection with mutual information, and finally classification with SVM. The results of the study showed that testing various SVM kernels and mutual information (MI) thresholds with a threshold of 85% provided the highest level of F1-score on the SVM machine with the RBF kernel and a C value = 10, which was 86,15%.
Monitoring Systems for Counting People Based on Wireless Multimedia Sensor Network Rantelobo, Kalvein; Sampeallo, Agusthinus; Mandala, J. F.; Lami, H. F. J.; Bernandus, B.; Rantelinggi, P. H.; Sastra, N. P.
Jurnal Media Elektro Vol 14 No 1 (2025): April 2025
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jme.v13i2.10214

Abstract

The visual sensor used in the Wireless Sensor Multimedia Networks (WSMN) in this work aims to monitor and calculate the number of people passing through a room. The contribution of this paper is the use of Raspberry Pi 3 devices that are connected to the internet using Internet-of-Thing (IoT) technology. The proposed scheme can be implemented in the actual environment. From the test results, the system has distinguished people entering and leaving the room by doing image processing using background subtraction, morphological transformation method, and calculating the contour area of the image. The results of image processing can calculate the number of people in the room, and the system can send it to the web server. Subsequently, this paper discussed the energy consumption used by the WSMN and explained test parameters.
Monitoring Systems for Counting People Based on Wireless Multimedia Sensor Network Rantelobo, Kalvein; Sampeallo, Agusthinus; Mandala, J. F.; Lami, H. F. J.; Bernandus, B.; Rantelinggi, P. H.; Sastra, N. P.
Jurnal Media Elektro Vol 14 No 1 (2025): April 2025
Publisher : Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jme.v13i2.10214

Abstract

The visual sensor used in the Wireless Sensor Multimedia Networks (WSMN) in this work aims to monitor and calculate the number of people passing through a room. The contribution of this paper is the use of Raspberry Pi 3 devices that are connected to the internet using Internet-of-Thing (IoT) technology. The proposed scheme can be implemented in the actual environment. From the test results, the system has distinguished people entering and leaving the room by doing image processing using background subtraction, morphological transformation method, and calculating the contour area of the image. The results of image processing can calculate the number of people in the room, and the system can send it to the web server. Subsequently, this paper discussed the energy consumption used by the WSMN and explained test parameters.
Multi-Document Summarization Using Tuna Swarm Optimization and Markov Clustering Widiartha, I Made; Hartati, Rukmi Sari; Wiharta, Dewa Made; Sastra, Nyoman Putra; Astuti, Luh Gede
JOIV : International Journal on Informatics Visualization Vol 9, No 4 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.4.3365

Abstract

The Internet contains a large number of documents from various sources with similar content. The contents of documents that are almost identical will lead to news redundancy, making it difficult for readers to distinguish between factual information and opinions. Multi-document summarization has been designed to enable readers to easily understand the meaning of news documents without needing to read multiple documents. Multi-document summarization aims to extract information from several texts written about the same topic. The resulting summary report enables users to obtain a single piece of information from multiple similar pieces of information sourced from various locations. Various approaches have been used in creating multi-document summaries. Issues regarding accuracy and redundancy are still a significant focus of research. In this paper, a new multi-document summarization model was built using Tuna Swarm Optimization (TSO) and Markov Clustering (MCL) methods. The dataset of this research is Indonesian language news from various online media sources. Based on hyperparameter tuning using training data, the best TSO model performance was obtained at variable values a = 0.7, z = 0.9, and the optimal number of tuna fish > 80. From the research results, it was found that TSO outperformed other swarm intelligence methods. The use of MCL has proven to be effective, as evidenced by the performance results, where TSO achieved an average ROUGE value 7.95% higher when MCL was applied. In this performance test, four standard evaluation metrics of the ROUGE toolkit were used.
Perancangan Hardware Sistem Monitoring Portabel Untuk Monitoring Arus dan Tegangan Listrik Menggunakan Raspberry Pi Negara, I Putu Bayu; Suyadnya, I Made Arsa; Sastra, Nyoman Putra
JST (Jurnal Sains dan Teknologi) Vol. 7 No. 1 (2018)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (805.723 KB) | DOI: 10.23887/jstundiksha.v7i1.13003

Abstract

Sistem monitoring mencakup pengumpulan, pelaporan, dan tindakan atas informasi suatu proses yang sedang berlangsung di suatu ruangan. Salah satu hal yang dapat dimonitoring pada ruangan adalah tingkat penggunaan listrik. Pada penelitian ini, dilakukan perancangan hardware sistem monitoring portabel yang dapat memonitoring arus dan tegangan listrik AC. Desain hardware menggunakan prosessor Raspberry Pi untuk mengolah hasil pembacaan 4 buah sensor arus YHDC tipe SCT-013-000 dan sensor tegangan AC. Hardware dapat diakses melalui antarmuka konfigurasi berbasis web yang menampilkan konektivitas jaringan dan nilai dari sensor-sensor. Hasil pengujian sensor arus pada saluran listrik 3 fase RSTN dan pengujian sensor tegangan didapatkan bahwa LCD pada hardware dan antarmuka konfigurasi berbasis web telah berhasil menampilkan nilai pembacaan sensor-sensor. Hardware juga telah berhasil terhubung ke jaringan wireless “RUANGAN01”pada alamat IP 192.168.8.107. Keseluruhan fungsionalitas antarmuka konfigurasi hardware berbasis web seperti login, koneksi perangkat, konfigurasi “on” sensor, reboot, shutdown dan reset juga telah berfungsi dengan baik dan sesuai dengan rancangan.
GPS-Based Rocket Payload Position Tracking System Wiharta, Dewa Made; Sastra, Nyoman Putra; Putra, A.A.B. Rama Windhu
JST (Jurnal Sains dan Teknologi) Vol. 12 No. 1 (2023): April
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jstundiksha.v12i1.55069

Abstract

The Ministry of Research, Technology and Higher Education Indonesia routinely hosts a competition of payload tracking system placed on a rocket with a Ground Control Station (GCS), a competition known as Kompetisi Muatan Roket dan Roket Indonesia. Fixed GCS antenna causes some problems, including poor communication between payload and GCS, and position detection of the payload. This research was conducted to create a tracking system capable of moving the GCS antenna towards the payload position. In this research, we use two servos to move the antenna. This payload position tracking system works by calculating the azimuth angle of GCS coordinate and of the payload, then converting the azimuth value into the servo angle value. The calculation performs by Arduino Mega 2560 which then commands both the horizontal and vertical  servos to direct the antenna towards the payload position. The experiments are performed with three main tests that are of tracking payload position based on GPS data, of antenna direction movement with servo horizontal motion direction, and of antenna direction movement with servo vertical motion direction. Testing are carried out by laying the payload on a drone and adjust the position and height of the drone manually. Experimental results show that the largest angular difference between the tracking system and the payload is 8 degrees azimuth. The mean angle difference is 4.7 degrees. This angle deviation occurs because the servo angle instruction can only be with an integer value.
Co-Authors A.A Ngurah Amrita Adhitya Bayu Rachman Pratama Afrizal Awlan Suryandaru agung aditya nugraha Agus Riki Gunawan Agus Supranartha Agusthinus Sampeallo, Agusthinus Anak Agung Bagus Rama Windhu Putra Anggreni, Ni Komang Ayu Sri Ari Wijaya I Kadek Asri Prameshwari Bayu Bimantara Putra Bernandus, B. Cokorda Gde Wahyu Pramana Dewa Made Wiharta dian krisnandari Duman Care Khrisne Dwi Yoga Pratama Fajar Purnama G M Arya Sasmita Gamantyo Hendrantoro Gede Sukadarmika Gusti Ketut Bella I G. A. K. Diafari Djuni Hartawan I Gede Primanata I Gede Wira Darma I Gede Yogi Prawira Putra I Gusti Ayu Garnita Darma Putri I Gusti Ngurah Aditya Dharma I ketut Gede Darma Putra I Ketut Sukawanana Putra I Made Agung Pranata I Made Arsa Suyadnya I Made Artana I Made Oka Widyantara I Made Rai Suarimbawa I Made Sastra Dwikiarta I MADE SUDARMA I Made Sukarsa I Made Widiartha I Nyoman Putra Maharddhika I Nyoman Putu Suwindra I Putu Agus Eka Darma Udayana, I Putu Agus Eka I Putu Aldha Rasjman Sayoga I Putu Arie Pratama I Putu Gede Hendra Suputra I Putu Suryadharma I Wayan Adi Juliawan Pawana I Wayan Krisna Saputra I Wayan Manik Suhartanta Ida Bagus Adisimakrisna Peling Ida Bagus Vidananda Agastya IGN. Agung Dwi Jaya Putra K.O. Saputra Kessawa Adnyana Gede Oka Anak Agung Ketut Adi Kurniawan Kheri Arionadi Shobirin Komang Oka Saputra Komang Sri Utami Komang Tania Paramecwari Komang Yuda Krisnawan Lami, H. F. J. Lely Meilina Lie Jasa Linawati Linawati . Linawati Linawati Luh Ayu Diah Fernita Sari Luh Gede Astuti M Sudarma M. A. Suyadnya M. Azman Maricar Made Pasek Agus Ariawan Made Sri Satyawati Made Sudarma Made Sutha Yadnya Mandala, J. F. Michael Angelo Vincensio Simon Muhammad Anshari Muhammad Anshari Naufal Muhajir Abidin Negara, I Putu Bayu Negara, I Putu Bayu Ni Komang Ayu Sri Anggreni Ni Komang Utari Yulianingsih Ni Made Ary Esta Dewi Wirastuti Ni Putu Diah Arista Ningsih Nicko Satrio Pambudi Nurulita Aini Nyoman Pramaita Putra, A.A.B. Rama Windhu Putra, Rio Juniyantara Putu Andhika Kurniawijaya Putu Dhiko Pradnyana Rantelinggi, P. H. Rifky Lana Rahardian Rio Juniyantara Putra Rukmi Sari Hartati Rukmi Sari Hartati Sari, Luh Ayu Diah Fernita Sukadarmika, I Gede Widyadi Setiawan Wirawan Wirawan Yohanes Hendra Nugroho Yohanes Pracoyo Widi Prasetyo Yusuf Parri Akbar