The implementation of the 2024 elections is regulated in the General Election Commission Regulation (PKPU) Number 3 of 2022, which also stipulates the election schedule and stages.After the simultaneous general elections that took place on February 14, 2024, problems arose among the public regarding the Quick Count results, especially for the Presidential election.The Quick Count results themselves generated various opinions, both positive and negative.In the post-election Twitter page, there are many conversations in cyberspace related to the Quick Count results on Twitter. Thus, sentiment analysis can be used to classify tweets and comments about the 2024 election quick count results into three categories, namely positive, negative, and neutral.Thus, this analysis is expected to provide some significant benefits related to the quick count results in the 2024 election. Random Forest and Support Vector Machine are two machine learning techniques used to measure how accurate the resulting sentiment analysis is. From the results of the research that has been carried out, there are 2000 data collected during February 2024. After preprocessing and labeling, there are 1,116 positive class data, 730 negative class data and 154 neutral class data.From the results of the comparison of the algorithms evaluated, the accuracy value of the two algorithms was obtained.The Random Forest algorithm produces an accuracy of 78%, while the SVM algorithm produces an accuracy of 80%.This shows that in sentiment analysis on the 2024 election quick count, the SVM method obtained a greater accuracy value compared to Random Forest.