p-Index From 2021 - 2026
5.075
P-Index
Claim Missing Document
Check
Articles

Scalability Testing of Land Forest Fire Patrol Information Systems Khusaeri, Ahmad; Sitanggang, Imas Sukaesih; Rahmawan, Hendra
JOIN (Jurnal Online Informatika) Vol 8 No 1 (2023)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v8i1.977

Abstract

The Patrol Information System for the Prevention of Forest Land Fires (SIPP Karhutla) in Indonesia is a tool for assisting patrol activities for controlling forest and land fires in Indonesia. The addition of Karhutla SIPP users causes the need for system scalability testing. This study aims to perform non-functional testing that focuses on scalability testing. The steps in scalability testing include creating schemas, conducting tests, and analyzing results. There are five schemes with a total sample of 700 samples. Testing was carried out using the JMeter automation testing tool assisted by Blazemeter in creating scripts. The scalability test parameter has three parameters: average CPU usage, memory usage, and network usage. The test results show that the CPU capacity used can handle up to 700 users, while with a memory capacity of 8GB it can handle up to 420 users. All users is the user menu that has the highest value for each test parameter The average value of CPU usage is 44.8%, the average memory usage is 69.48% and the average network usage is 2.8 Mb/s. In minimizing server performance, the tile cache map method can be applied to the system and can increase the memory capacity used.
Rancangan Sistem Penilaian Kinerja Perpustakaan Berbasis Indikator Kinerja Iso 11620:2008 Pada Layanan Terbuka Perpustakaan Nasional RI Wakhid, Abdul; Sitanggang, Imas Sukaesih; Saleh, Abdul Rahman
Jurnal Pustakawan Indonesia Vol. 14 No. 2 (2015): Jurnal Pustakawan Indonesia
Publisher : Perpustakaan IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (498.411 KB) | DOI: 10.29244/jpi.14.2.%p

Abstract

Library performance measurement is one of a strategy to evaluate utilization of library resources. The objective of this study was to identify indicators needed to measure the performance and to design an counting system measurement at Open Service at National Library of Indonesia.  The measurement indicators were based on ISO 11620:2008 consisting of 45 indicators. It was selected 10 indicators: 1) percentage of required titles in the collection (RTC); 2) shelving accuracy (SA); 3)  staff per capita (LS); 4) collection turnover (CT); 5) loans per capita (LPC); 6) in-library use per capita (IUC); 7) library visits per capita (LVC); 8) percentage of target population reached (PTPR); 9) user satisfaction (AUS); 10)  user services staff as a percentage of total staff (USSPTS).  The indicators were selected through four stages: 1) selecting indicators related to activities in the Indonesia National Library and removing indicators related to activities that are not conducted in the institution; 2) removing indicators related to cost; 3)  identifying and selecting indicators related to vision and mission by the questionnaire; 4) analizing the results of the questionnaire and setting the indicators that have an average value of the results greater than 0 as an  selected indicator. The results of managements attitude that required the a performance counting system. System design was developed based on the system requirements and management’s needs. The system that was able to process data  into information of performance. The system was integrated with the integrated national library system (INLIS) and the data that were not available in INLIS were manually input. Steps of system developing were defining use case, description use case, activity diagram, class diagram, sequence diagram, object role/relational mapping and entity relationship diagram.  Keywords: Information System, ISO 11620, Library, Performance Indicators
Internet of things-drone trajectory planning model with edge computing based on long range payload in rural areas Prasetyo Nugroho, Eddy; Djatna, Taufik; Sukaesih Sitanggang, Imas; Hermadi, Irman
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.8776

Abstract

The integration of internet of things (IoT) with unmanned aerial vehicle (UAV) or drone, for precision agriculture (PA) in rural tea plantations is required to ensure optimal outcomes. However, rural settings presents exceptional challenges for data transmission, particularly in maintaining effective communication between drone and ground control stations (GCS). Therefore, this research aimed to develop a payload metadata identification model using long range (LoRa) technology, known for robust IoT capabilities of the model. LoRa was used to transmit drone data packets to GCS, including image data computations and onboard sensor information. Additionally, the research proposed IoT-drone trajectory planning model, specifically designed for PA in rural tea plantations. This model incorporated LoRa technology for data transmission, leveraging the effectiveness of the model in remote areas. Edge computing was also integrated into model to classify the suitability of tea plantation picking areas based on image captured with drone. An important component of the research was trajectory planning system, which optimized drone flight paths by considering location data, throughput data, battery energy consumption, and the computation of suitable picking locations. Finally, experimental results showed the effectiveness of the proposed model in identifying payload metadata, monitoring drone trajectory, and optimizing picking location paths in rural tea plantations.
Effects of Semi-Automated Preprocessing in The Beef Freshness Prediction based on Near Infrared Spectroscopy Raafi'udin, Ridwan; Purwanto, Yohanes Aris; Sitanggang, Imas Sukaesih; Astuti, Dewi Apri
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol. 16 No. 2 (2025): JURNAL SIMETRIS VOLUME 16 NO 2 TAHUN 2025
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v16i2.15142

Abstract

This study investigates the application of near-infrared spectroscopy (NIR) within the wavelength range of 1350–2550 nm to predict key quality parameters of beef, specifically focusing on tenderloin cuts. The quality indicators assessed include drip loss, color, pH, moisture content, storage duration, and total plate count (TPC) as a measure of microbial load. Predictive modeling was conducted using three machine learning algorithms: Partial Least Squares (PLS), Support Vector Regression (SVR), and Random Forest Regressor (RFR). To enhance model accuracy, a semi-automated preprocessing pipeline was employed utilizing the Nippy library. This library integrates several spectral preprocessing techniques including Savitzky-Golay filtering, Standard Normal Variate (SNV), Robust Normal Variate (RNV), Local Standard Normal Variate (LSNV), as well as clipping, resampling, baseline correction, and smoothing.  Among the models developed using raw spectral data, the RFR model exhibited the highest performance, achieving coefficient of determination (R²) values of 0.82 for drip loss, 0.65 for color, 0.67 for pH, 0.61 for moisture content, 0.81 for storage duration, and 0.76 for TPC. Post preprocessing, the predictive accuracy improved significantly with R² values increasing to 0.89, 0.82, 0.87, 0.85, 0.91, and 0.90 respectively for the same parameters. These findings underscore the potential of combining advanced machine learning techniques with robust preprocessing methods to enhance the non-destructive, rapid assessment of beef quality parameters. This approach offers a promising tool for quality control in the meat processing industry, facilitating more efficient and accurate monitoring of product standards.
Model Klasifikasi Lahan Hijaun Pakan Ternak Ruminansia Dengan Algoritma Random Forest Pada Kabupaten Lumajang Marlina, Dwi; Sitanggang, Imas Sukaesih; Annisa, Annisa; Astuti, Dewi Apri
Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer Vol. 16 No. 2 (2025): JURNAL SIMETRIS VOLUME 16 NO 2 TAHUN 2025
Publisher : Fakultas Teknik Universitas Muria Kudus

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24176/simet.v16i2.15967

Abstract

Informasi mengenai ketersediaan lahan hijauan pakan ternak ruminansia pada tutupan lahan memerlukan data spasial yang akurat, salah satunya dapat diperoleh melalui teknologi penginderaan jauh. Citra satelit Landsat 8 mampu menyediakan informasi mengenai tutupan lahan, termasuk lahan hijauan, badan air, pemukiman, industri, dan jalan. Citra satelit tidak hanya menginformasikan lahan hijauan saja tetapi dapat menginformasikan tutupan lahan seperti badan air, pemukinan, industri, dan jalan. Oleh karena itu, diperlukan proses klasifikasi tutupan lahan untuk mengindentifikasi area yang berfungsi sebagai sumber hijauan pakan ternak ruminansia. Identifikasi ini penting untuk mengetahui ketersediaan pakan, yang selanjutnya dapat digunakan sebagai dasar dalam memprediksi biomassa vegetasi. Penelitian ini bertujuan untuk mengklasifikasi tutupan lahan hijauan yang berperan sebagai pakan ternak ruminansia. Metode yang digunakan adalah algoritma random forest dengan memanfaatkan citra satelit Landsat 8 untuk wilayah , Kabupaten Lumajang pada periode tahun 2018 hingga 2022. Hasil klasifikasi menghasilkan tiga kelas utama lahan hijaua, yaitu perkebunan, pertanian/sawah, dan semak belukar. Model klasifikasi yang dibangun mencapai tingkat akurasi sebesai 93%. Berdasarkan hasil analisis, rat-rata lahan hijauan di Kabupaten Lumajang terdiri atas lahan perkebunan sebuas 23.865,78 ha, pertanian/sawah seluas 18.363,21 ha, dan semak belukar seluas 949,98 ha. Hasil penelitian menunjukkan bahwa lahan hijauan di Kabupaten Lumajang didominasi oleh perkebunan, sehingga daerah ini memiliki potensi yang baik untuk pengembangan hijauan sebagai pakan ternak ruminansia. Ketersediaan lahan yang luas diharapkan dapat mendukung usaha peternakan dan pengelolaan sumber daya pakan di wilayah tersebut.
Fire Spot Identification Based on Hotspot Sequential Pattern and Burned Area Classification Sitanggang, Imas Sukaesih; Istiqomah, Nalar; Syaufina, Lailan
BIOTROPIA Vol. 25 No. 3 (2018): BIOTROPIA Vol. 25 No. 3 December 2018
Publisher : SEAMEO BIOTROP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11598/btb.2018.25.3.676

Abstract

Indonesia has the world's largest tropical peatlands of about 14.9 million hectares that have important life support roles. However, fire frequently occurs in peatlands. According to experts and field forest firefighters, fire hotspots that appear in a sequence of two to three days at the same location have a high potential of becoming a forest fire. This study aimed to determine the sequential patterns of hotspot occurrences, classify satellite image data and identify the fire spots. Fire spot identification was done using hotspot sequence patterns that were overlaid with burned area classification results. Sequential pattern mining using the Prefix Span algorithm was applied to identify sequences of hotspot occurrence. Maximum Likelihood method was applied to classify Landsat 7 satellite images toward identifying burned areas in Pulang Pisau and Palangkaraya in Central Kalimantan and Pontianak in West Kalimantan. Sequence patterns were overlaid with image classification results. The study results show that in Pulang Pisau, 26.19% of sequence patterns are located in burned areas and 72.62% sequence patterns were found in the buffer of burned area within a radius of one kilometer. As for Palangkaraya, there were 62.50% sequence patterns located in burned areas and 87.50% sequence patterns in the buffer of burned area within the radius of one kilometer. In total, there were 72.62% and 87.50% fire hotspots recorded in Pisau and Palangkaraya, respectively, which are strong indicators of peatland fires.
Co-Authors -, Rachmawati Abdul Rahman Saleh Abdul Wakhid Aditia Yudhistira Agus Buono Agus Mulyana Agus Purwito Ahmad Khusaeri Albar, Israr Alusyanti Primawati Anak Agung Istri Sri Wiadnyani Andi Nurkholis Andita Wahyuningtyas Anna Qahhariana Annisa Annisa Annisa Annisa Annisa Awal, Elsa Elvira Aziz Kustiyo Baba Barus Badollahi Mustafa Boedi Tjahjono Bramdito, Vandam Caesariadi Despry Nur Annisa Ahmad, Despry Nur Annisa DEWI APRI ASTUTI Dhani Sulistiyo Wibowo Dini Hayati Dwi Purwantoro Sasongko Eddy Prasetyo Nugroho Efendi, Zuliar Erliza Hambali Fakhri Sukma Afina Febriyanti Bifakhlina Firman Ardiansyah Hardhienata, Medria Kusuma Dewi Hari Agung Adrianto Hasibuan, Lailan Sahrina Hefni Effendi Hendra Rahmawan Hendra Rahmawan Herawan, Yoga Heru Sukoco HUSNUL KHOTIMAH I Nengah Surati Jaya Ikhsan kurniawan Irman Hermadi Istiqomah, Nalar Ivan Maulana Putra Khairani Krisnanto, Ferdian Kurnianto, Andi Lailan Syaufina Lilis Syarifah Luki Abdullah Marlina, Dwi Medria Kusuma Dewi Hardhienata Miftah Farid Mohammad, Farid mufti, abdul Muhammad Abrar Istiadi Muhammad Asyhar Agmalaro Muhammad Murtadha Ramadhan Nia Kurniati Peggy Antonette Soplantila Prasetyo Nugroho, Eddy Pudji Muljono Purwanti , Endang Yuni Purwanti, Endang Yuni Putra, Fiqhri Mulianda Raden Fityan Hakim Raharja, Aditya Cipta Ramadhan, Jeri Rd. Zainal Frihadian Ridwan Raafi'udin Rina Trisminingsih Risa Intan Komaraasih Rizki, Yoze Safrudin, Muhammad Safrul Sakti, Harry Hardian Santoso, Angga Bayu Satyawan, Verda Emmelinda Shelvie Nidya Neyman Sobir Sobir Sonita Veronica Br Barus Sonita Veronica Br Barus Sony Hartono Wijaya Suci Indrawati Irwan Sulistyo Basuki Suradiradja, Kahfi Heryandi Suria Darma Tarigan Surjono Hadi Sutjahjo Syarifah Aini Taihuttu, Helda Yunita Taufik Djatna Taufik Hidayat Tenda, Edwin Tiurma Lumban Gaol Toto Haryanto Trisminingsih, Rina Unik, Mitra Wa Ode Rahma Agus Udaya Manarfa Wattimena, Emanuella M C Wisnu Ananta Kusuma Wulandari WULANDARI Yenni Puspitasari Yoanda, Sely