This Author published in this journals
All Journal IJCCS (Indonesian Journal of Computing and Cybernetics Systems) TEKNIK INFORMATIKA Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Semantik Techno.Com: Jurnal Teknologi Informasi Jurnal Teknologi Informasi dan Ilmu Komputer Proceeding of the Electrical Engineering Computer Science and Informatics Fountain of Informatics Journal Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) RABIT: Jurnal Teknologi dan Sistem Informasi Univrab Indonesian Journal on Software Engineering (IJSE) Faktor Exacta Jukung (Jurnal Teknik Lingkungan) CogITo Smart Journal INOVTEK Polbeng - Seri Informatika JRMSI - Jurnal Riset Manajemen Sains Indonesia KACANEGARA Jurnal Pengabdian pada Masyarakat Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI) Informatik : Jurnal Ilmu Komputer Jurnal Riset Informatika JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika) METIK JURNAL Scientific Journal of Informatics Idealis : Indonesia Journal Information System SKANIKA: Sistem Komputer dan Teknik Informatika Jurnal Teknik Informatika (JUTIF) Jurnal PkM (Pengabdian kepada Masyarakat) Kresna: Jurnal Riset dan Pengabdian Masyarakat Bit (Fakultas Teknologi Informasi Universitas Budi Luhur) Jurnal Algoritma Jurnal Ticom: Technology of Information and Communication Journal of Social And Economics Research Journal Of Communication Education Telematika MKOM Jurnal INFOTEL Jurnal Ticom: Technology of Information and Communication journal of social and economic research JuTISI (Jurnal Teknik Informatika dan Sistem Informasi)
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Jurnal Riset Informatika

Pregnancy Risk Level Classification Using The CRISP-DM Method Reka Dwi Syaputra; Achmad Solichin
Jurnal Riset Informatika Vol 5 No 1 (2022): Priode of December 2022
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v5i1.487

Abstract

Independent midwife practices have the task of reminding and maintaining the quality of standardized reproductive health services for pregnant women. Independent midwife practices have had patient visits since the covid-19 pandemic from 2020 to 2021, especially at the yetti puranama midwife, which consists of 320 pregnancy examinations, 130 delivery care, and 50 referrals. The covid-19 pandemic has impacted maternal mortality rates because there are still many restrictions on all services. Maternal health services include pregnant women who are routinely unable to go to the puskesmas or other healthcare facilities due to fear of contracting covid-19, which delays the examination of pregnancy gravida, abortion, temperature, pregnancy distance, haemoglobin, blood pressure, ideal weight, and decisions. So that the problem that occurs is an increase in the risk of pregnancy, resulting in death and increased maternal mortality. In solving this problem, the research takes a machine-learning approach. The research aims to build a classification of pregnancy risk levels that can predict early treatment in this study using the random forest method with cross-validation 2. This study obtained the results of an accuracy value of 98%, precision of 94%, and recalled 100% in the random forest method.
Mobile Based Student Presence System Using Haar Cascade and Eigenface Facial Recognition Methods Suherman Achmad; Nazori AZ; Achmad Solichin
Jurnal Riset Informatika Vol 5 No 2 (2023): Priode of March 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v5i2.340

Abstract

Using biometric technology for recording attendance in the school environment is still not widely done by researchers. In this study, a solution was proposed to the problems that occurred in the school environment where parents/guardians could not monitor the presence of their children in school. The solution offered is a student attendance recording system based on facial recognition algorithms (face recognition). The built system can record the presence of students when entering the classroom and when returning home or out of class. Proposed methods for identifying student attendance are the Haar Cascade and Eigenface algorithms. The system can also provide notice of attendance or absence of students in real time to parents/guardians via email that has been registered. The method can provide accurate and fast facial recognition results based on the test results. The presence system developed based on mobile can recognize faces up to a distance of 200-300 cm with low and moderate light intensity.
IMPLEMENTASI METODE SIMPLE ADDITIVE WEIGHTING (SAW) PADA SISTEM PENDUKUNG KEPUTUSAN UNTUK MENYELEKSI SAHAM PRIMA Ratna Kusumawardani; Achmad Solichin
Jurnal Riset Informatika Vol. 1 No. 3 (2019): Periode Juni 2019
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (925.571 KB)

Abstract

Pada penelitian ini dibahas mengenai sistem pendukung keputusan untuk menyeleksi saham prima. Masalah yang terjadi dalam penelitian adalah adanya kalangan umum maupun profesional yang masih melakukan analisis fundamental secara manual dalam pengambilan keputusan pembelian saham. Penggunaan sistem pendukung keputusan diharapkan dapat membantu dalam proses pengolahan data saham yang memiliki kategori prima menjadi lebih efektif. Metode Simple Additive Weighting (SAW) ini dipilih karena mampu menyeleksi alternatif terbaik dari sejumlah alternatif. Dalam hal ini alternatif yang dimaksudkan yaitu saham prima berdasarkan kriteria-kriteria yang ditentukan. Penelitian dilakukan dengan menentukan nilai bobot untuk setiap atribut, kemudian dilakukan proses perankingan yang akan menentukan alternatif yang optimal, yaitu saham terbaik. Hasil penelitian berupa aplikasi sistem pendukung keputusan penyeleksi saham prima yang dibangun dengan bahasa pemrograman Java dan basisdata MySQL. Aplikasi ini berguna untuk memilih alternatif yang terbaik untuk mendapatkan saham prima. Para investor yang akan berinvestasi di saham, tidak akan salah membeli saham karena sudah memiliki daftar nama-nama saham prima.
Pregnancy Risk Level Classification using the Crisp-DM Method Reka Dwi Syaputra; Achmad Solichin
Jurnal Riset Informatika Vol. 5 No. 1 (2022): December 2022
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1095.021 KB) | DOI: 10.34288/jri.v5i1.195

Abstract

Independent midwife practices are tasked with reminding and maintaining the quality of standardized reproductive health services for pregnant women. Independent midwife practices have had patient visits since the COVID-19 pandemic from 2020 to 2021, especially at the Yetti puranama midwife, which consists of 320 pregnancy examinations, 130 delivery care, and 50 referrals. The COVID-19 pandemic has impacted maternal mortality rates because there are still many restrictions on all services. Maternal health services include pregnant women who are routinely unable to go to the puskesmas or other healthcare facilities due to fear of contracting COVID-19, which delays the examination of pregnancy gravida, abortion, temperature, pregnancy distance, hemoglobin, blood pressure, ideal weight, and decisions. So that the problem that occurs is an increase in the risk of pregnancy, resulting in death and increased maternal mortality. In solving this problem, the research takes a machine-learning approach. The research aims to build a classification of pregnancy risk levels that can predict early treatment in this study using the random forest method with cross-validation 2. This study obtained the results of an accuracy value of 98%, precision of 94%, and recalled 100% in the random forest method.
Mobile Based Student Presence System Using Haar Cascade and Eigenface Facial Recognition Methods Suherman Achmad; Nazori AZ; Achmad Solichin
Jurnal Riset Informatika Vol. 5 No. 2 (2023): March 2023
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34288/jri.v5i2.213

Abstract

Using biometric technology for recording attendance in the school environment is still not widely done by researchers. In this study, a solution was proposed to the problems that occurred in the school environment where parents/guardians could not monitor the presence of their children in school. The solution offered is a student attendance recording system based on facial recognition algorithms (face recognition). The built system can record the presence of students when entering the classroom and when returning home or out of class. Proposed methods for identifying student attendance are the Haar Cascade and Eigenface algorithms. The system can also provide notice of attendance or absence of students in real time to parents/guardians via email that has been registered. Based on the test results, the method can provide accurate and fast facial recognition results. The presence system developed based on mobile can recognize faces up to a distance of 200-300 cm with low and moderate light intensity.
Co-Authors Abdullah 'Alim Achmad Maulana Agus Harjoko Agus Santoso Ahmad Ihsanudin Ahmad Zainul Mafakhir Akbar, Kafi Kurnia Alfredo Pasaribu Alhafiz, Muhammad Ihza Ananda Surya, Archie Andi Hakim Arif Andi Jumardi Anggi Ayu Ningtyas Anindya Putri Pradiptha Arif, Andi Hakim Arista Riski, Nanda Asmoro, Phaksi Bangun Bayu Raditya Nasution Bernadeta Asri Rejeki Tulodo Chandra, Joko Christian Dasril Aldo Dedy Mirwansyah Dewantara, Erno Kurniawan Dhiesky Chaerullah Dwi Kristanto Emil Salim Fadlan Amrullah Fahrullah Fahrullah Galih Gumilar Widhasmara Goenawan Brotosaputro Hanafi, Mohammad Afif Hari Soetanto Iqbal Chalid Irennada Ismail Adi Susanto Khaeri Diniari Khansa Khairunnisa Kurnianta, Kristana Lia Amellia Putri Lutfi Nukman Majid, Muhammad Farras Masdar Desiawan Mochammad Andika Putra Mohammad Syafrullah Muhamad Refaldi Muhammad Agus Arianto Muhammad Agus Arianto Muhammad Ali Akbar Muhammad Arif Kurniawan Muhammad Fahrizal Muhammad Hamdi Sukriyandi Muhammad Verdiansyah Muharam, Asep Budiyana Nariza Wanti Wulan Sari Nazori AZ Noor Ferdyansyah Nugroho, Ludi Obby Oktafianto Painem, Painem Painem, Painem Pradana, Rizky Pradiptha, Anindya Putri Pramudita, Bagas Prayogi, Muhamad Nur Rahmat Kurniawan Rasyid, Annisa Ratna Kusumawardani Reka Dwi Syaputra Restu Maulunida Reva Ragam Santika Richki Hardi Riki Wijaya Rizki Darmawan, Dika Robby Suganda Rusdah Rusdah Saddam, M Amiruddin Setiyadi, Prambudi Suherman Achmad Syahrul, Ahmad Tan Wee Chang Tetlageni, Muhamad Ridho Triyono, Gandung Ummu Habibah Romlah Utomo Budiyanto Wahyu Desena Wati, Lisna Wirasno, Wirasno Zainal A. Hasibuan Zulfikar Rosadi