Claim Missing Document
Check
Articles

Model Optimasi SVM-GSBE dalam Menangani High Dimensional Data Stunting Kota Samarinda Siti Muawwanah; Taghfirul Azhima Yoga Siswa; Wawan Joko Pranoto
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41545

Abstract

Stunting has become a widely discussed health issue in Indonesia, par-ticularly in Samarinda City, which recorded a prevalence of 12.7% in 2023, making it the highest in East Kalimantan Province. The use of data mining techniques becomes crucial in overcoming the challenges of high dimensional data, such as computational complexity, the risk of overfitting, and visualization difficulties. This study aims to enhance the accuracy of Support Vector Machine optimization models using Grid Search and Backward Elimination feature selection (SVM-GSBE) to handle high-dimensional data related to stunting in Samarinda City. The dataset used is sourced from Samarinda City Health Office in 2023, covering 26 community health centers with 21 attributes and a total of 150,466 records. The research methodology includes data collection, pre-processing, data partitioning using K-Fold Cross Validation, feature selection using Backward Elimination, and SVM model optimization with Grid Search. Features such as BB/U, ZS TB/U, ZS BB/U, ZS BB/TB, Height, and LiLA have proven to increase accuracy in stunting data classification. Evaluation results show that Grid Search successfully increased accuracy for Linear from 99.59% to 99.78%, Polynomial from 90.92% to 99.40%, RBF from 89.80% to 98.36%, and Sigmoid from 75.29% to 86.84%. This indicates that the SVM-GSBE model can effectively be used as a tool for early detection of stunting and to support health policies in Samarinda City.
Model Optimasi KNN-PSORF dalam Menangani High Dimensional Data Banjir Kota Samarinda Restu, Anggiq Karisma Aji; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41587

Abstract

Floods are a natural phenomenon that frequently occurs in Indonesia, including in Samarinda City which has faced flood issues over the past three years, affecting thousands of homes and around 27,000 residents. Predicting flood disasters requires machine learning technology using data mining classification methods. However, classification processes often encounter issues related to high-dimensional data, which can lead to overfitting and class imbalance, thereby biasing dominant classes while neglecting minority classes. This research aims to enhance classification accuracy in Samarinda City's flood data using the K-Nearest Neighbor (KNN) algorithm combined with Relief feature selection and Particle Swarm Optimization (PSO) optimization. The validation method employed is 10-fold cross-validation, with performance evaluation using a confusion matrix. Data sourced from Samarinda City's Disaster Management Agency (BPBD) and Meteorology, Climatology, and Geophysics Agency (BMKG) spans from 2021 to 2023, comprising 19 features and a total of 1095 records. Relief feature selection identified four crucial features: maximum wind direction, wind speed, average wind speed, and maximum wind speed direction. Average evaluations with k values of 3, 5, 7, 11, 13, and 15 demonstrate that Relief feature selection and PSO optimization effectively enhance accuracy in the K-Nearest Neighbor algorithm for flood data, with KNN and PSO yielding improvements of 2-5%. Relief feature selection alone improves accuracy by 1-2%, while combining Relief with PSO provides a 2-5% enhancement. The combined KNN, Relief, PSO model is expected to deliver optimal performance in classifying Samarinda City's flood data.
Model Optimasi Random Forest dengan PSO-CHI-SM dalam Mengatasi High Dimensional dan Imbalanced Data Banjir Kota Samarinda Taufiq, Ilham; Siswa, Taghfirul Azhima Yoga; Pranoto, Wawan Joko
Jurnal Teknologi Sistem Informasi dan Aplikasi Vol. 7 No. 3 (2024): Jurnal Teknologi Sistem Informasi dan Aplikasi
Publisher : Program Studi Teknik Informatika Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32493/jtsi.v7i3.41632

Abstract

Flooding is a natural disaster that frequently affects our country. Samarinda City, in particular, continues to experience frequent flooding events with 18 incidents in 2018, 33 incidents in 2020, and 32 incidents in 2021. To predict flood disasters, it is necessary to utilize technology known as machine learning for analyzing and classifying floods. However, classification often encounters issues with high-dimensional data and class imbalance. This study aims to determine the extent to which the accuracy of flood disaster classification improves by using the Random Forest algorithm with PSO for optimization, Chi-Square feature selection, and SMOTE oversampling to balance classes. The data used in this study comprises flood data from 2021-2023 obtained from BMKG and BPBD Samarinda City, with a total of 1095 records and 11 attributes. The validation technique used is 5-fold cross-validation, and the evaluation uses a confusion matrix. The results of the Chi-Square feature selection identified Rainfall, Maximum Wind Direction, Most Frequent Wind Direction, Humidity, Sunshine Duration, and Wind Speed as the most influential features based on Chi-Square scores and P-values. The average accuracy obtained from the proposed classification model using 5-fold cross-validation reached 96.02%.
IMPLEMENTASI METODE NAIVE BAYES UNTUK KLASIFIKASI KECELAKAAN LALU LINTAS DI KOTA SAMARINDA Salsabila, Cindy Azra; Yulianto, Fendy; Siswa, Taghfirul Azhima Yoga
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5890

Abstract

Kecelakaan lalu lintas merupakan permasalahan serius di Kota Samarinda yang dipengaruhi oleh berbagai faktor seperti kondisi cahaya, cuaca, kelas jalan, tipe jalan, kondisi permukaan jalan, kemiringan jalan, batas kecepatan di lokasi, dan status jalan berkontribusi terhadap tingkat kecelakaan lalu lintas. Dalam mengatasi permasalahan penentuan kecelakaan lalu lintas dapat menggunakan konsep klasifikasi dengan metode Naive Bayes. Data yang digunakan akan dibagi menjadi dua bagian dengan rasio 80:20 untuk pelatihan dan pengujian, serta divalidasi menggunakan K-Fold Cross Validation dengan K=12, kemudian didapatkan hasil akurasi sebesar 84%. Hasil ini menunjukkan bahwa metode Naive Bayes dapat digunakan untuk melakukan penentuan jenis kecelakaan lalu lintas yang ada di Kota Samarinda.
ANALISIS SENTIMEN APLIKASI MYSILOAM MENGGUNAKAN METODE NAÏVE BAYES lia, Alvina; Rahim, Abdul; Yoga Siswa, Taghfirul Azhima
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i1.5997

Abstract

Aplikasi Mysiloam yang dikembangkan oleh Siloam Hospitals merupakan platform yang menyediakan berbagai layanan kesehatan, aplikasi ini dirancang untuk memudahkan pasien dalam mengakses berbagai layanan kesehatan secara efisien dan praktis, maka dari itu penting untuk memahami persepsi pengguna melalui analisis sentimen. Penelitian ini bertujuan untuk menganalisis sentimen pengguna terhadap aplikasi Mysiloam dengan menggunakan metode Naive Bayes. Data yang digunakan dalam penelitian ini terdiri dari ulasan pengguna yang diambil dari lama Google Play Store pada aplikasi Mysiloam sebanyak 1995 ulasan melalui tahapan Scrapping. Proses analisis dimulai dengan tahap Processing data, termasuk pembersihan teks, penghapusan stop words, dan tokenize untuk mempersiapkan data sebelum dilakukan analisis. Setelah data diproses, model dilatih menggunakan teknik TF-IDF dan Confusion Matriks untuk menguji ketepatan analisis. Hasil penelitian menunjukkan bahwa model Naive Bayes berhasil mencapai akurasi sebesar 86%, yang menunjukkan efektivitas metode ini dalam menganalisis sentimen positif dan negatif dari ulasan pengguna. Dari analisis yang dilakukan, ditemukan bahwa mayoritas pengguna memberikan ulasan positif mengenai fitur dan kemudahan penggunaan aplikasi, meskipun terdapat beberapa kritik terkait performa aplikasi.
Implementation of the PSO-SMOTE Method on the Naive Bayes Algorithm to Address Class Imbalance in Landslide Disaster Data Damari, Azwar; Taghfirul Azhima Yoga Siswa; Wawan Joko Pranoto
INOVTEK Polbeng - Seri Informatika Vol. 10 No. 1 (2025): March
Publisher : P3M Politeknik Negeri Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35314/7wcvrb72

Abstract

Landslides in Samarinda, which often occur after floods, pose a threat to settlements, infrastructure, and the agricultural sector. This study proposes a combination of Naïve Bayes, SMOTE (Synthetic Minority Oversampling Technique), and PSO (Particle Swarm Optimization) to address class imbalance in landslide prediction. The results show that while PSO successfully improves the accuracy of the Naïve Bayes model, the application of SMOTE led to a decrease in accuracy for some method combinations. This decrease is due to changes in data distribution caused by synthetic data, which can introduce noise and affect feature selection and model optimisation. However, the combination of Naïve Bayes with PSO optimisation resulted in a modest accuracy improvement (+0.48%). These findings suggest that SMOTE should be used cautiously, while PSO is more effective in enhancing the accuracy of the landslide prediction model. The implications for practical application are that although SMOTE and PSO can improve accuracy, the impact of synthetic data on data distribution must be considered, and further testing is needed to ensure its effectiveness in real-world conditions.
The Prediction of Late Tuition Fees at Muhammadiyah University of East Kalimantan Using the Logistic Regression Method Taufiqurrahman, Taufiqurrahman; Siswa, Taghfirul Azhima Yoga
JSE Journal of Science and Engineering Vol. 2 No. 1 (2023): Journal of Science and Engineering
Publisher : LPPI Universitas Muhammadiyah Kalimantan Timur (UMKT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30650/jse.v1i1.3435

Abstract

Muhammadiyah University of East Kalimantan in carrying out its operational activities relies on funds from students, one of which is tuition fees (SPP). This creates problems if students are late in making tuition payments, because tuition payments can improve the quality of education and facilitie. Therefore, the purpose of this study is to determine indicators, then implement the logistic regression algorithm by dividing the data into 70:30 and evaluating the performance results of the algorithm using the confusion matrix. The data obtained are sourced from the Academic Administration Section and the Financial Administration Section as many as 12,408 data with several attributes such as the faculty, study program, class, gender, father's income, mother's income, father's education, mother's education and label (late or not late). From the results of the data test that has been carried out, it gets the results of an accuracy of 55.89%.
PERANCANGAN FASILITAS USAHA DAN PLATFORM DIGITAL BERKELANJUTAN BAGI UMKM LAMIN PAMUNG TAWAI Bahrudin, Faizal; Haryadi, Rina Mashitoh; Siswa, Taghfirul Azima Yoga
Bakti Banua : Jurnal Pengabdian Kepada Masyarakat Vol. 6 No. 2 (2025): Bakti Banua: Jurnal Pengabdian kepada Masyarakat
Publisher : Sekolah Tinggi Ilmu Manajemen Indonesia (STIMI) Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35130/3563f364

Abstract

Pengabdian kepada masyarakat di UMKM Lamin Pamung Tawai, Desa Budaya Pampang, Samarinda bertujuan meningkatkan kapasitas usaha melalui perancangan fasilitas usaha dan pengembangan platform digital untuk pemasaran produk kerajinan khas Dayak. kegiatan ini dilaksanakan melalui observasi lapangan, perancangan penutup kios dan meja jualan sekat penutup, pelatihan digital marketing dan pengembangan web budayapampang.web.id menjadi platform e-commerce. indikator keberhasilan mencakup tersedianya fasilitas usaha yang nyaman dan aman, kemampuan anggota UMKM dalam memanfaatkan platform digital untuk transaksi online, serta peningkatan transaksi. Hasil kegiatan menunjukan tercapainya fasilitas usaha yang lebih layal, meningkatkanya pemanfaatan digital marketing dan adanya peningkatan transaksi onlie. kegiatan ini memberikan dampak ekonomi, sosial dan budaya positif serta membuka pengembangan usaha berkelanjutan di masa depan.
PENERAPAN ALGORITMA NAIVE BAYES, RECURSIVE FEATURE ELIMINATION, DAN ADAPTIVE SYNTHETIC SAMPLING PADA KLASIFIKASI PENYAKIT DERMATITIS Hidayat, Wahyu; Yoga Siswa, Taghfirul Azhima; Hasudungan, Rofilde
Jurnal INSTEK (Informatika Sains dan Teknologi) Vol 10 No 2 (2025): OCTOBER
Publisher : Department of Informatics Engineering, Faculty of Science and Technology, Universitas Islam Negeri Alauddin, Makassar, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/instek.v10i2.59737

Abstract

Dermatitis merupakan salah satu penyakit kulit yang umum terjadi dan menyerang sekitar 5,7 juta orang setiap tahunnya. Di Indonesia, penyakit ini tergolong sebagai salah satu dari tiga besar faktor risiko yang berkontribusi terhadap peningkatan kasus kanker kulit. Penelitian ini bertujuan untuk mengklasifikasikan penyakit dermatitis menggunakan algoritma Naive Bayes dengan penerapan teknik seleksi fitur Recursive Feature Elimination (RFE) serta penyeimbangan data Adaptive Synthetic Sampling (ADASYN). Data penelitian terdiri atas 392 kasus dermatitis dari UPT Puskesmas Bontang Barat tahun 2024, berdasarkan surat persetujuan izin penelitian Nomor B/000.9.2.4/393/PUS-BB/2025, dengan izin etik dan persetujuan dari pihak terkait untuk penggunaan data dalam kegiatan penelitian dan publikasi ilmiah. Validasi model dilakukan menggunakan metode 5-fold cross-validation, sedangkan evaluasi kinerja model menggunakan confusion matrix untuk mengukur akurasi. Hasil penelitian menunjukkan bahwa fitur sistolik, diastolik, umur, berat badan, dan tinggi badan berkontribusi signifikan terhadap proses klasifikasi. Model awal menghasilkan akurasi sebesar 60,15%, meningkat menjadi 66,52% setelah penerapan ADASYN, dan mencapai 90,89% ketika RFE dan ADASYN diterapkan secara bersamaan. Peningkatan akurasi sebesar 24,37% dibandingkan model awal ini membuktikan bahwa penerapan teknik seleksi fitur dan penyeimbangan data dapat meningkatkan kinerja model klasifikasi penyakit dermatitis.
Penerapan Sistem Public E-Services: Portal Informasi, Layanan Administrasi dan Pengaduan pada Kantor Desa Kerta Buana Taghfirul Azhima Yoga Siswa; Istimaroh Istimaroh; Wawan Joko Pranoto
KREATIF: Jurnal Pengabdian Masyarakat Nusantara Vol. 5 No. 1 (2025): Jurnal Pengabdian Masyarakat Nusantara
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/kreatif.v5i1.5769

Abstract

Kerta Buana Village Office in Kutai Kartanegara Regency faces several challenges in disseminating information and administrative services and public complaint systems. Currently, administrative services and complaint processes are still carried out conventionally, where the public must come directly and wait for officers to execute the service. In addition, the limited number of experts in supporting IT devices causes the service process to remain traditional. Therefore, Kerta Buana Village Office requires a system that can provide information and administrative services digitally to the public. The proposed system is Public E-Service which includes an information portal, online administrative services, and website-based public complaints. The implementation of the Public E-Services system is expected to optimize employee performance, improve service quality, and increase public satisfaction with public services in the village government. The main objective of implementing this system is so that Kerta Buana Village can provide better public services and make it easier for the public. The implementation method uses the System Development Life Cycle (SDLC) approach which consists of five stages: planning, analysis, design, implementation, and maintenance. The planning stage focuses on priority problems and planned solutions, while the analysis stage is carried out in the first two months to collect information related to the problem. The system design was carried out for three months, and the implementation, which took five months, included the creation of the Public E-Services website as well as training and socialization for users. The maintenance phase included monitoring and evaluation with student support to ensure optimal system sustainability.