Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING

Performance Evaluation of CNN-LSTM and CNN-FNN Combinations for Pneumonia Classification Using Chest X-ray Images Putra, Bernardus Septian Cahya; Tahyudin, Imam
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol. 8 No. 2 (2025): Issues January 2025
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v8i2.13503

Abstract

Pneumonia is one of the deadliest infectious diseases worldwide, particularly affecting children under five years old and the elderly, with a significant mortality rate annually. This disease is caused by bacterial, viral, or fungal infections, leading to inflammation in the air sacs (alveoli) of the lungs, which disrupts respiratory function. A major challenge in diagnosing pneumonia lies in the reliance on radiological expertise to interpret chest X-ray images, a process that is time-consuming and prone to errors in interpretation. This study aims to compare the performance of deep learning models, specifically the combination of Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and CNN with Feedforward Neural Networks (FNN), in classifying pneumonia based on chest X-ray images. The results indicate that the CNN & LSTM model achieved an accuracy of 96.59%, a loss of 9.95%, precision of 96%, recall of 95%, and F1-score of 96%, slightly outperforming the CNN & FNN model, which achieved an accuracy of 96.13%, a loss of 12.16%, precision of 96%, recall of 94%, and F1-score of 95%. The advantage of CNN & LSTM lies in its ability to capture sequential patterns through LSTM, making it more effective in detecting positive pneumonia cases. In conclusion, the CNN & LSTM model outperforms the CNN & FNN model in accuracy, recall, and F1-score, making it a more reliable choice for automatic pneumonia classification. The findings suggest the potential use of deep learning models, particularly CNN & LSTM, to support medical professionals and the public in quickly and accurately detecting pneumonia through chest X-ray images analysis
Co-Authors Agustina, Nur Ngaenun Al-Haq, Ahnaf Vanning Al-Haq Alam, Yusuf Nur Alfirnanda, Weersa Talta Ammar Fauzan, Ammar Ananda, Fahesta Ananda, Rona Sepri Andrianto Andrianto Anggraini, Lintang Wahyu ANNISA HANDAYANI Anton Satria Prabuwono Arifa, Pujana Nisya Aris Munandar Azhari Shouni Barkah Bayu Surarso Berlilana Berlilana Che Pee, Ahmad Naim Daffa, Nauffal Ammar Dani Arifudin Dhanar Intan Surya Saputra Diniyati, Faoziyah Fahiya Eko Priyanto Eko Winarto Evania Adna Faiz Ichsan Jaya Fajariyanti, Alya Nur Fandy Setyo Utomo Fatmawati, Karlina Diah Febryanto, Bagas Aji Fitriani, Intan Indri Giat Karyono Hadie, Agus Nur Hellik Hermawan Hermanto, Aldy Agil Hidayah, Septi Oktaviani Nur Ilham, Rifqi Arifin Irfan Santiko Iskoko, Angga Isnaini, Khairunnisak Nur Khoerida, Nur Isnaeni khusnul khotimah Kuat Indartono Kusuma, Bagus Adhi Lestari, Silvia Windri Ma'arifah, Windiya Maulida, Trisna Melia Dianingrum Miftahus Surur, Miftahus Muhammad Reza Pahlevi Murtiyoso Murtiyoso Musyafa, Muhamad Fahmi Nabila, Putri Isma Najibulloh, Imam Kharits Nanjar, Agi Nazwan, Nazwan Nur Adiya, Az Zahra Dwi Nur Faizah Nur holifah, Anggita Oyabu, Takashi Prasetya, Subani Charis Prastyo, Priyo Agung PUJI LESTARI Purwadi Purwadi Purwadi Purwadi Putra, Bernardus Septian Cahya Putra, Feishal Azriel Arya R Rizal Isnanto Rahayu, Dania Gusmi Rahma, Felinda Aprilia Ramadani, Nevita Cahaya Rizaqi, Hanif Rozak, Rofik Abdul Rozak, Rofiq 'Abdul Rozak, Rofiq Abdul Rozak, Rofiq ‘Abdul Rozaq, Hasri Akbar Awal Saefullah, Ufu Samsul Arifin Santoso, Bagus Budi Sarmini Sarmini Satriani, Laela Jati Setiabudi, Rizki Sholikhatin, Siti Alvi Syafaat, Alif Yahya Syafiq, Bayu Ibnu Taqwa Hariguna Tikaningsih, Ades Tri Retnaningsih Soeprobowati Triana, Latifah Adi Triawan, Puas Wardani, Syafa Wajahtu Widiawati, Neta Tri Widya Cholid Wahyudin Wini Audiana Wulandari, Hendita Ayu Yarsasi, Sri Zainal Arifin Hasibuan Zulfa Ummu Hani Zumaroh, Agnis Nur Afa