Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JOURNAL OF APPLIED INFORMATICS AND COMPUTING

Comparative Analysis of VGG16 and ResNet50 Model Performence in Cardiac ECG Image Classification Rizaqi, Hanif; Tahyudin, Imam
Journal of Applied Informatics and Computing Vol. 9 No. 3 (2025): June 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i3.9350

Abstract

This study systematically evaluates and compares the effectiveness of two deep learning architectures, VGG16 and ResNet50, in automating electrocardiogram (ECG) image classification for cardiac condition diagnosis. The dataset was obtained from a public source and consists of 2,898 color ECG images converted from raw signals, categorized into four classes: Abnormal Heartbeat, Myocardial Infarction, Normal Individual, and History of Heart Attack. The data underwent preprocessing steps including resizing to 224×224 pixels, pixel normalization to a 0–1 range, label encoding, one-hot encoding, and an 80:20 split for training and testing. Transfer learning was applied using feature representations from the VGG16 and ResNet50 models, employing the Adam optimizer and categorical cross-entropy loss function. To enhance training efficiency and prevent overfitting, early stopping was implemented based on validation loss performance. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics. The results showed that VGG16 achieved 95% accuracy with a loss of 0.1522, precision of 95%, recall of 94%, and F1-score of 94%. In contrast, ResNet50 attained 81% accuracy with a loss of 0.5730, precision of 82%, recall of 79%, and F1-score of 80%. These findings indicate that, within the context of this study, VGG16 consistently outperformed ResNet50 across all evaluation metrics in the ECG image classification task. Therefore, the application of transfer learning using the VGG16 model demonstrates strong potential as an effective approach for AI-based ECG image classification systems.
Co-Authors Agustina, Nur Ngaenun Al-Haq, Ahnaf Vanning Al-Haq Alam, Yusuf Nur Alfirnanda, Weersa Talta Ammar Fauzan, Ammar Ananda, Fahesta Ananda, Rona Sepri Andrianto Andrianto Anggraini, Lintang Wahyu ANNISA HANDAYANI Anton Satria Prabuwono Arifa, Pujana Nisya Aris Munandar Azhari Shouni Barkah Bayu Surarso Berlilana Berlilana Che Pee, Ahmad Naim Daffa, Nauffal Ammar Dani Arifudin Dhanar Intan Surya Saputra Diniyati, Faoziyah Fahiya Eko Priyanto Eko Winarto Evania Adna Faiz Ichsan Jaya Fajariyanti, Alya Nur Fandy Setyo Utomo Fatmawati, Karlina Diah Febryanto, Bagas Aji Fitriani, Intan Indri Giat Karyono Hadie, Agus Nur Hellik Hermawan Hermanto, Aldy Agil Hidayah, Septi Oktaviani Nur Ilham, Rifqi Arifin Irfan Santiko Iskoko, Angga Isnaini, Khairunnisak Nur Khoerida, Nur Isnaeni khusnul khotimah Kuat Indartono Kusuma, Bagus Adhi Lestari, Silvia Windri Ma'arifah, Windiya Maulida, Trisna Melia Dianingrum Miftahus Surur, Miftahus Muhammad Reza Pahlevi Murtiyoso Murtiyoso Musyafa, Muhamad Fahmi Nabila, Putri Isma Najibulloh, Imam Kharits Nanjar, Agi Nazwan, Nazwan Nur Adiya, Az Zahra Dwi Nur Faizah Nur holifah, Anggita Oyabu, Takashi Prasetya, Subani Charis Prastyo, Priyo Agung PUJI LESTARI Purwadi Purwadi Purwadi Purwadi Putra, Bernardus Septian Cahya Putra, Feishal Azriel Arya R Rizal Isnanto Rahayu, Dania Gusmi Rahma, Felinda Aprilia Ramadani, Nevita Cahaya Rizaqi, Hanif Rozak, Rofik Abdul Rozak, Rofiq 'Abdul Rozak, Rofiq Abdul Rozak, Rofiq ‘Abdul Rozaq, Hasri Akbar Awal Saefullah, Ufu Samsul Arifin Santoso, Bagus Budi Sarmini Sarmini Satriani, Laela Jati Setiabudi, Rizki Sholikhatin, Siti Alvi Syafaat, Alif Yahya Syafiq, Bayu Ibnu Taqwa Hariguna Tikaningsih, Ades Tri Retnaningsih Soeprobowati Triana, Latifah Adi Triawan, Puas Wardani, Syafa Wajahtu Widiawati, Neta Tri Widya Cholid Wahyudin Wini Audiana Wulandari, Hendita Ayu Yarsasi, Sri Zainal Arifin Hasibuan Zulfa Ummu Hani Zumaroh, Agnis Nur Afa