Claim Missing Document
Check
Articles

Found 40 Documents
Search

Pemanfaatan E-commerce dan Media Sosial Guna Meningkatkan Ekonomi dan Proses Bisnis UMKM Koppontren NURILA Bangkalan Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Handayani Tjandrasa; Agus Zainal Arifin; Zakiya Azizah Cahyaningtyas; Yulia Niza; Evelyn Sierra; Daniel Sugianto; Kevin Christian Hadinata; Salim Bin Usman; Muhammad Fikri Sunandar; Fiqey Indriati Eka Sari
Sewagati Vol 6 No 4 (2022)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (861.366 KB) | DOI: 10.12962/j26139960.v6i4.135

Abstract

Usaha Mikro, Kecil, dan Menengah (UMKM) memiliki peran yang besar dalam bidang industri dan ekonomi suatu negara. Di era digital ini, pemanfaatan teknologi untuk meningkatkan produktifitas UMKM sudah marak dilakukan. Sayangnya pemanfaatan tekonologi ini belum diterapkan pada UMKM dari Koperasi Pondok Pesantren Addimyathy Nurul Iman Labang (Koppontren NURILA). Tim pengabdi berinisiatif melaksanakan pelatihan untuk meningkatkan produktifitas UMKM Koppontren NURILA. Kegiatan terbagi menjadi empat tahap yaitu persiapan, pelatihan, pendampingan, dan evaluasi. Kegiatan ini mengangkat topik tentang pemanfaatan e-commerce dan media sosial untuk peningkatan ekonomi dan proses bisnis UMKM. Pelaksanaan pelatihan dan pendampingan dilakukan secara hybrid, yaitu daring dan luring di lokasi UMKM Koppontren NURILA. Berdasarkan hasil evaluasi, peserta kegiatan merasa puas terhadap kualitas materi dengan nilai 4.35 dari skala 5.
Pemanfaatan Platform Google Classroom untuk Pembelajaran Daring di Pondok Pesantren Miftahul Ulum Al-Islamy, Bangkalan, Madura Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Diana Purwitasari; Handayani Tjandrasa; Agus Zainal Arifin; Akwila Feliciano; Yulia Niza; Rangga Kusuma Dinata; Safhira Maharani; Ahmad Syauqi; Sherly Rosa Anggraeni; Fandy Kuncoro Adianto; Zakiya Azizah Cahyaningtyas; Salim Bin Usman; Kevin Christian Hadinata
Sewagati Vol 4 No 3 (2020)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (269.198 KB)

Abstract

Proses pembelajaran daring menjadi hambatan tersendiri dalam bidang pendidikan, terlebih untuk pendidikan wajib yang harus dilakukan secara bertatap muka langsung antara pengajar dan pelajar. Di luar faktor permasalahan eksternal, permasalahan internal perlu diselesaikan terlebih dahulu, yaitu media pembelajaran. Salah satu platform digital yang tersedia sebagai media pembelajaran untuk menunjang pembelajaran secara daring adalah Google Classroom. Aplikasi Google Classroom berbasis web yang berbentuk pembelajaran asynchronous atau dapat dikatakan pemberian materi ajar dilakukan secara tidak langsung. Walaupun sebuah media daring sudah tersedia, masih ada yang belum mengenal atau memahami penggunaan aplikasi Google Classroom sebagai media ajar mereka. Oleh karena itu, kami mengadakan pengabdian masyarakat berupa pelatihan tentang penggunaan aplikasi Google Classroom bagi guru-guru di Pondok Pesantren Miftahul Ulum Al-Islamy, yang berada di Bangkalan, Madura. Selain itu, tim pengabdi juga melakukan pendampingan bagi guru-guru dalam mempraktikkan penggunaan Google Classroom sesuai dengan mata pelajaran yang diajar. Berdasarkan hasil survei, sebanyak 91% dari total peserta pelatihan menyebutkan bahwa pelatihan ini dapat meningkatkan pengetahuan dan kemampuan secara softskill dan hardskill para guru.
Pemanfaatan Teknologi Informasi dalam Penyusunan Materi Pembelajaran Berbasis Multimedia Interaktif pada SDN Sutorejo I/240 Surabaya Dini Adni Navastara; Nanik Suciati; Chastine Fatichah; Handayani Tjandrasa
Sewagati Vol 7 No 6 (2023)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j26139960.v7i6.553

Abstract

Model pembelajaran yang efektif diperlukan oleh setiap Lembaga Pendidikan. Di era digital ini, teknologi dapat dimanfaatkan untuk meningkatkan pembelajaran tersebut. Dengan perkembangan teknologi yang semakin pesat dan canggih tentunya akan membuat pengelola pendidikan, khususnya guru/pengajar akan semakin berupaya untuk meningkatkan kompetensinya mempelajari teknologi dalam rangka meningkatkan kualitas pembelajaran di sekolah. Sekolah Dasar Negeri Sutorejo I/240 Surabaya merupakan salah satu sekolah dasar negeri yang turut serta dalam pengembangan materi pembelajaran pada program Kementerian Pendidikan dan Kebudayaan (Kemdikbud) yaitu Rumah Belajar. Agar bahan materi pembelajaran menarik, terstruktur dan interaktif, maka guru menyusun materi pembelajaran dengan berbasis multimedia. Oleh karena itu, dalam rangka meningkatkan kualitas pembelajaran, dilakukan kegiatan pelatihan pemanfaatan teknologi informasi, seperti Microsoft PowerPoint untuk menyusun materi pembelajaran berbasis multimedia interaktif. Kegiatan terbagi menjadi empat tahap yaitu persiapan, pelatihan, pendampingan, dan evaluasi. Pelaksanaan pelatihan dan pendampingan dilakukan secara hybrid, yaitu daring dan luring di Laboratorium Pemrograman I Teknik Informatika ITS. Dan pelaksanaan evaluasi dilakukan secara luring di SDN Sutorejo I/240, Surabaya. Berdasarkan hasil evaluasi, peserta pelatihan yaitu guru dapat mengimplementasikan materi pelatihan dengan baik, sehingga peserta didik lebih tertarik dengan pembelajaran menggunakan Microsoft PowerPoint.
KOMPARASI METODE SCICA DAN WICA PADA PRAPROSES DATA EEG OTAK MANUSIA UNTUK DETEKSI PENYAKIT EPILEPSI Bagusmulya, Aditya; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 14, No. 2, Juli 2016
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v14i2.a564

Abstract

Epilepsi merupakan salah satu kelainan pada otak manusia yang tidak dapat disembuhkan. Penyakit ini menimbulkan kejang pada tubuh dan sangat mengganggu aktivitas. Pada tingkat yang parah, epilepsi dapat membahayakan nyawa penderitanya. Oleh sebab itu, epilepsi harus dideteksi secara dini agar penderita segera mendapatkan penanganan yang tepat sehingga keadaannya tidak memburuk. Pada penelitian ini, deteksi epilepsi dilakukan dengan menggunakan beberapa metode, yaitu Independent Component Analysis (ICA), Wavelet Transform (WT), dan Multilayer Perceptron (MLP). Hasil deteksi diklasifikasikan ke dalam tiga kelas, yaitu normal, epilesi tidak kejang, dan epilepsi kejang. Data rekaman electroencephalogram (EEG) yang digunakan berasal dari ''Klinik für Epileptologie, Universität Bonn” yang diperoleh secara online. Data tersebut merupakan EEG single channel sehingga harus menggunakan teknik-teknik ICA untuk single channel, seperti Single Channel Independent Component Analysis (SCICA) dan Wavelet Independent Component Analysis (WICA). Penelitian ini membandingkan kedua teknik tersebut dalam melakukan praproses data sehingga akan terlihat teknik mana yang lebih baik. Hasil pendeteksian terbaik dihasilkan dari model yang menggunakan teknik SCICA sebagai penghilang derau dan ektraksi fitur Discrete Wavelet Transform Daubechies 6 dengan 4 level. Berdasarkan uji coba, metode tersebut menghasilkan akurasi sebesar 92.09%.
KLASIFIKASI DATA EEG UNTUK MENDETEKSI KEADAAN TIDUR DAN BANGUN MENGGUNAKAN AUTOREGRESSIVE MODEL DAN SUPPORT VECTOR MACHINE Mahendra, Yunan Helmi; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 1, Januari 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i1.a633

Abstract

Tidur merupakan kebutuhan dasar manusia. Salah satu gangguan tidur yang cukup berbahaya adalah narkolepsi, yaitu gangguan tidur kronis yang ditandai dengan rasa kantuk yang luar biasa di siang hari dan serangan tidur yang terjadi secara tiba-tiba. Salah satu metode dokter untuk mendiagnosis penyakit narkolepsi adalah dengan melihat aktivitas gelombang otak (melalui sinyal EEG) pasien. Penelitian ini bertujuan untuk mengembangkan perangkat lunak yang dapat mengklasifikasikan keadaan tidur dan bangun melalui sinyal EEG secara otomatis. Dataset EEG yang digunakan tersedia di Physionet. Pertama-tama data EEG yang menjadi masukan dilakukan normalisasi dan filtering. Proses filtering dilakukan untuk membagi data menjadi 3 subband yaitu theta, alpha, dan beta. Setelah itu pada masing-masing subband dilakukan tahap ekstraksi fitur menggunakan Autoregressive Model. Hasil estimasi koefisien AR model digunakan sebagai fitur. Metode yang digunakan untuk mengestimasi koefisien AR model yaitu metode Yule-Walker dan metode Burg. Dataset dibagi menjadi data latih dan data uji menggunakan 10-fold cross validation. Data training digunakan untuk membuat SVM Model. SVM Model digunakan untuk mengklasifikasikan data testing sehingga menghasilkan keluaran label 1 untuk tidur dan label 0 untuk bangun. Untuk menentukan kelas final dilakukan majority vote dari hasil klasifikasi masing-masing subband. Performa sistem diperoleh dengan menghitung akurasi, presisi, dan sensitivitas pada setiap skenario uji coba. Skenario uji coba yang dilakukan antara lain dengan memvariasikan order AR, fungsi kernel, dan parameter C pada SVM. Dari hasil uji coba yang dilakukan, metode Yule-Walker menghasilkan rata-rata akurasi 80.60%, presisi 78.19%, dan sensitivitas 77.56%. Metode Burg menghasilkan akurasi 94.01%, presisi 95.70%, dan sensitivitas 93.39%. Hasil tersebut menunjukkan metode Burg memiliki performa lebih baik dibandingan dengan metode Yule-Walker.
KLASIFIKASI EEG EPILEPSI MENGGUNAKAN SINGULAR SPECTRUM ANALYSIS, POWER SPECTRAL DENSITY DAN CONVOLUTION NEURAL NETWORK Aji, Nurseno Bayu; Tjandrasa, Handayani
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 15, No. 2, Juli 2017
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v15i2.a662

Abstract

Epilepsi merupakan gangguan sistem syaraf otak manusia dan menyebabkan berbagai reaksi terhadap tubuh manusia. Epilepsi dapat dideteksi dengan menggunakan Electroencephalogram (EEG). Pengamatan EEG secara visual tidak mungkin dilakukan secara rutin, sehingga dibutuhkan deteksi otomatis pada EEG. Sistem deteksi EEG secara otomatis terdiri dari 2 langkah, yaitu ekstraksi fitur dan klasifikasi. Power Spectral Density (PSD) adalah metode ekstraksi fitur yang sering dipakai untuk memunculkan karakteristik EEG dengan mengelompokkan energi pada EEG. Pada proses klasifikasi metode Convolution Neural Network (CNN) dapat mereduksi fitur hasil PSD dan digunakan mengklasifikasikan multiclass dari EEG. Namun, data EEG memiliki kecenderungan bercampur noise berupa sinyal yang lain saat perekaman, oleh karena itu sebelum data EEG diklasifikasikan, perlu dilakukan pengolahan terlebih dahulu.  Pada penelitian ini diusulkan penggabungan metode Singular Spectrum Analysis (SSA) untuk penghilang noise, PSD sebagai ekstraksi fitur dan CNN sebagai klasifier. Penelitian ini dilakukan melalui beberapa fase, pertama adalah menghilangkan noise yang bercampur dengan sinyal EEG menggunakan SSA. Selanjutnya ekstraksi fitur menggunakan PSD untuk diambil energi dari sinyalnya, dan terakhir diklasifikasi dengan CNN. Pengujian klasifikasi akan dilakukan ke 500 sinyal dengan target 5 kelas dan 3 kelas. Untuk mengetahui performa terhadap metode yang diusulkan, akan dilakukan pengujian antara gabungan PSD dengan CNN yang akan dibandingkan dengan gabungan SSA, PSD dan CNN.Berdasarkan hasil uji coba, metode diusulkan yaitu SSA, PSD dan CNN dapat meningkatkan rata-rata hasil akurasi klasifikasi sebesar 1,2% dari 93,2% menjadi 94,4%, untuk kasus 3 kelas  dan meningkatkan 13,4% dari 78,6% menjadi 92%, untuk kasus 5 kelas dibandingkan metode PSD dengan CNN.
Soft Weighted Median Filter Method for Improved Image Segmentation with Noise Manek, Siprianus Septian; Tjandrasa, Handayani
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a721

Abstract

Soft Weighted Median Filter Method (SWMF) is one of the new methods for noise filtering in image processing. This method is used for two types of noise in images, there is fixed valued noise (FVN) and random valued noise (RVN). Fixed valued noise is a noise type with an unchanged value, it changes the pixel value of the image to the maximum and minimum values (0 and 255), while random valued noise is a noise type with a changed value. An example of fixed valued noise is salt & pepper noise, while for random valued noise can be exemplified as gaussian, poisson, speckle, and localvar noise.Based on previous research, SWMF method can be applied to all images with all kinds of noise (FVN and RVN) and able to reduce the noise well. This method has a higher PSNR value than other methods, especially for random valued noise types such as: gaussian, speckle, and localvar noise.In this study, we propose to examine the performance of the SWMF method further by comparing this method with other methods such as Median Filter, Mean Filter, Gaussian Filter, and Wiener Filter in an image segmentation process. The image segmentation process in this research is based on area detection using Top-Hat transform and Otsu thresholding and line detection using Sobel edge detection. The performance measurement process uses the calculation of sensitivity value, specificity, and accuracy on the image segmentation with the groundtruh image.The results show that Soft Weighted Median Filter method can improve the quality of image segmentation with the average accuracy of 95.70% by reducing fixed value noise and random valued noise in the images.
Segmentasi Citra Sel Tunggal Smear Serviks Menggunakan Metode Radiating Normally Biased Generalized Gradient Vector Flow Snake Susanti, Martini Dwi Endah; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a762

Abstract

Sebuah sistem penyaringan otomatis dan sistem diagnosa yang akurat sangat berguna untuk proses analisis hasil pemeriksaan pap smear. Langkah yang paling utama dari sistem tersebut adalah proses segmentasi sel nukleus dan sitoplasma pada citra hasil pemeriksaan pap smear, karena dapat memengaruhi keakuratan sistem. Normally Biased Generalized Gradient Vector Flow Snake (NBGGVFS) merupakan sebuah algoritma gaya eksternal untuk active contour (snake) yang menggabungkan metode Generalized Gradient Vector Flow Snake (GGVFS) dan Normally Biased Gradient Vector Flow Snake (NBGVFS). Dalam memodelkan snake, terdapat fungsi edge map. Edge map biasanya dihitung dengan menggunakan operator deteksi tepi seperti sobel. Namun, metode ini tidak dapat mendeteksi daerah nukleus dari citra smear serviks dengan benar. Penelitian ini bertujuan untuk segmentasi citra sel tunggal smear serviks dengan memanfaatkan penggunaan Radiating Edge Map untuk menghitung edge map dari citra dengan metode NBGGVFS. Metode yang diusulkan terdiri atas tiga tahapan utama, yaitu tahap praproses, segmentasi awal dan segmentasi kontur. Uji coba dilakukan dengan menggunakan data set Herlev. Pengujian dilakukan dengan membandingkan hasil segmentasi metode yang diusulkan dengan metode pada penelitian sebelumnya dalam melakukan segmentasi citra sel tunggal smear serviks. Hasil pengujian menunjukkan bahwa metode yang diusulkan mampu mendeteksi area nukleus lebih optimal metode penelitian sebelumnya. Nilai rata-rata akurasi dan Zijdenbos Similarity Index (ZSI) untuk segmentasi nukleus adalah 96,96% dan 90,68%. Kemudian, nilai rata-rata akurasi dan ZSI untuk segmentasi sitoplasma adalah 86,78% and 89,35%. Dari hasil evaluasi tersebut, disimpulkan metode yang diusulkan dapat digunakan sebagai proses segmentasi citra smear serviks pada identifikasi kanker serviks secara otomatis.
Retinal Blood Vessel Segmentation Based on Encoder and Decoder Networks Using Weighted Cross Entropy Loss Function Qomariah, Dinial Utami Nurul; Tjandrasa, Handayani; Elvira, Ade Irma
ADALAH Vol 9, No 6 (2025)
Publisher : UIN Syarif Hidayatullah Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/adalah.v9i6.44857

Abstract

Retinal disease that has a major impact on human vision is diabetic retinopathy. Diabetic retinopathy is a disease caused by advanced diabetic mellitus. Early detection of the disease is very importance. An automated system that can recognize retinal blood vessel abnormalities is very useful for providing quick information to prevent further damage to the retina. In this study, we propose an automated system for segmenting the blood vessels in retinal fundus images using semantic segmentation based on pre-trained from VGG transfer learning and using median frequency balancing weights for the cross entropy loss function. The median frequency weights are to balance the importance of blood vessel and background pixels to get more accurate training results. The integration of encoder and decoder networks utilizing VGG transfer learning and semantic segmentation can segment retinal blood vessels with a sensitivity value of 85.48% using the DRIVE and STARE database.
Retinal Blood Vessel Segmentation Based on Encoder and Decoder Networks Using Weighted Cross Entropy Loss Function Qomariah, Dinial Utami Nurul; Tjandrasa, Handayani; Elvira, Ade Irma
BULETIN ADALAH Vol. 9 No. 6 (2025)
Publisher : UIN Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/adalah.v9i6.44857

Abstract

Retinal disease that has a major impact on human vision is diabetic retinopathy. Diabetic retinopathy is a disease caused by advanced diabetic mellitus. Early detection of the disease is very importance. An automated system that can recognize retinal blood vessel abnormalities is very useful for providing quick information to prevent further damage to the retina. In this study, we propose an automated system for segmenting the blood vessels in retinal fundus images using semantic segmentation based on pre-trained from VGG transfer learning and using median frequency balancing weights for the cross entropy loss function. The median frequency weights are to balance the importance of blood vessel and background pixels to get more accurate training results. The integration of encoder and decoder networks utilizing VGG transfer learning and semantic segmentation can segment retinal blood vessels with a sensitivity value of 85.48% using the DRIVE and STARE database.