Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Sinergi

Developing adjustable stiffness for smart material of magnetorheological elastomer to diminish vibration Gigih Priyandoko; Purbo Suwandono; Muhammad Ilman Nur Sasongko; Ubaidillah Ubaidillah; Sigit Tri Wicaksono
SINERGI Vol 28, No 1 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2024.1.016

Abstract

Many vibration isolators, such as passive vehicle mounting devices, have an inflexible stiffness. This article presents the development of a smart material vibration isolator based on magnetorheological elastomer (MRE), which has adjustable stiffness to minimize unwanted vibrations. The objective of this research is to first create a design for the vibration isolator, and then simulate a magnetic circuit. The Finite Element Method Magnetics (FEMM) software was employed to simulate the effectiveness of the electromagnetic circuit in generating a magnetic field through the vibration isolator by employing MRE samples. Pure iron was chosen as the material for the housing of the vibration isolator test rig. To attain an optimal magnetic field, an inventive design of the magnetic circuit, including examination of the wire type, size, and coil turn number, along with the housing material of the test rig, was performed. The study analyzed the performance of the MRE vibration isolator concerning different current inputs in the coil. The results indicate that the stiffness value of the MRE-based isolator system can be more effectively modified by increasing the current inputs. Therefore, a larger current input leads to a greater change in stiffness.
An Examination of the Fe₃O₄ nanomaterial impact in conjunction with Magnetorheological Elastomer material Priyandoko, Gigih; Ubaidillah, Ubaidillah; Imaduddin, Fitrian; Suwandono, Purbo; Sasongko, Muhammad Ilman Nur
SINERGI Vol 30, No 1 (2026)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2026.1.006

Abstract

Magnetorheological elastomer (MRE) is an advanced material class that can be used for vibration damping. This material possesses the ability to reduce vibration disturbances through adjustment of its mechanical properties in response to a magnetic field applied from an external source. The objective of this study is to ascertain the effect of incorporating Magnetite (Fe₃O₄) nanomaterials into MRE. It is expected that this new material will be more sensitive to magnetic fields in damping vibrations, which would be a significant improvement. MRE is composed of carbonyl iron powder (CIP), silicone oil, and silicone rubber, with weight proportions of 30%, 5%, and 65%, correspondingly. The addition of magnetite nanomaterials to MRE occurred at weight ratios of 0.5%, 1%, 1.5%, and 2%. Observations of this new material included elemental composition analysis and viscoelastic testing of various mixture formulations in the laboratory. From this research, it can be concluded that an MRE containing Fe₃O₄ nanomaterials has been created. For the attenuation of vibrations within the 1–100 Hz frequency range. MRE-2 (MRE with 0.5% Fe₃O₄ added) is the best choice as the primary material, as it exhibited the highest tan delta value and strong damping performance at an intermediate frequency. MRE-1 sample was used as a base material mixture without added Magnetite also an excellent choice, offering high stiffness and good damping capability at low frequencies. It is shown by the results of this experiment that the effectiveness of MRE in reducing vibration can be increased by adding Magnetite, even in the limited mid-frequency range of 0 to 100 Hz.