Claim Missing Document
Check
Articles

Found 39 Documents
Search

Application of Geographically Weighted Regression for Vulnerable Area Mapping of Leptospirosis in Bantul District Prima Widayani; Totok Gunawan; Projo Danoedoro; Sugeng Juwono Mardihusodo
Indonesian Journal of Geography Vol 48, No 2 (2016): Indonesian Journal of Geography
Publisher : Faculty of Geography, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3239.139 KB) | DOI: 10.22146/ijg.17601

Abstract

Abstract Geographically Weighted Regression (GWR) is regression model that developed for data modeling with continuous respond variable and considering the spatial or location aspect. Leptospirosis case happened in some regions in Indonesia, including in Bantul District, Special Region of Yogyakarta. The purpose of this study are to determine local and global variable in making vulnerable area model of Leptospirosis disease, determine the best type of weighting function and make vulnerable area map of Leptospirosis. Alos satelite imagery as primary data to get settlement and paddy fields area. The others variable are the percentage of population’s age, flood risk, and the number of health facility that obtained from secondary data. Determinant variables that affect locally are flood risk, health facility, percentage of age 25-50 years old and the percentage of settlement area. Meanwhile, independent variable that affects globally is the percentage of paddy fields area. Vulnerability map of Leptospirosis disease resulted from the best GWR model which used weighting function Fixed Bisquare. There are 3 vulnerable area of Leptospirosis disease, high vulnerability area located in the middle of Bantul District, meanwhile the medium and low vulnerability area showed clustered pattern in the side of Bantul District. Abstrak Geographically Weighted Regression (GWR) adalah model regresi yang dikembangkan untuk memodelkan data dengan variabel respon yang bersifat kontinu dan mempertimbangkan aspek spasial atau lokasi.  Kejadian Leptospirosis terjadi di beberapa wilayah di Indonesia termasuk di wilayah Kabupaten Bantul Daerah Istimewa Yogyakarta. Tujuan dari penelitian ini adalah menentukan variabel lokal dan global dalam membuat model  kerentanan Leptospirosis dan menentukan jenis fungsi pembobot yang terbaik serta membuat peta kerentanan wilayah Leptospirosis menggunakan aplikasi GWR. Citra Satelit Alos digunakan untuk mendapatkan data penggunaan lahan, yang selanjutnya diturunkan menjadi prosentase luas permukiman dan sawah. Parameter lainya adalah prosentase umur penduduk, resiko banjir dan jumlah fasilitas kesehatan yang diperoleh dari data sekunder. Variabel yang berpengaruh secara lokal adalah  Risiko Banjir, Fasilitas Kesehatan Presentase Usia 25-50 tahun, Prosentase Luas Pemukiman, sedangkan variabel independen yang bepengaruh secara global adalah Presentase Luas Sawah.  Peta kerentanan Leptospirosis yang dihasilkan dari model GWR terbaik yaitu menggunakan fungsi pembobot  Fixed Bisquare. Terdapat 3 kelas kerentanan Leptospirosis yaitu kelas kerentanan tinggi berada di desa-desa di tengah Kabupaten Bantul, sedangkan kelas sedang dan rendah menunjukkan pola menggelompok di wilayah pinggiran Kabupaten Bantul
Deteksi Permukiman Kumuh Menggunakan Informasi Spektral dan Tekstur Citra Multiresolusi Spasial (studi di sebagian Kota Yogyakarta) Achmad Fadhilah; Prima Widayani; Iswari Nur Hidayati
Geo Media: Majalah Ilmiah dan Informasi Kegeografian Vol 19, No 1 (2021): Geo Media: Majalah Ilmiah dan Informasi Kegeografian
Publisher : Universitas Negeri Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/gm.v19i1.40164

Abstract

Pemetaan dan identifikasi merupakan tahap awal dalam program peningkatan kualitas permukiman kumuh. Pemetaan permukiman kumuh saat ini masih menggunakan metode survei langsung yang membutuhkan banyak biaya, waktu, dan tenaga. Penelitian ini bertujuan untuk mendeteksi keberadaan permukiman kumuh menggunakan citra satelit multiresolusi spasial sebagai metode alternatif dalam mengidentifikasi permukiman kumuh. Citra yang digunakan dalam penelitian ini antara lain: Pleiades-1B, SPOT-7, dan Sentinel-2. Studi ini berlokasi di sebagian Kota Yogyakarta yang dibagi dua daerah penelitian. Algortima Support Vector Machine (SVM) digunakan untuk mengkelaskan permukiman kumuh dan bukan kumuh. Parameter yang digunakan dalam penelitian ini antara lain: Saluran multispektral, Grey Level Co-occurrence Matrx (GLCM), dan Normalized Difference Vegetation Index (NDVI). Validasi dilakukan dengan menggabungkan data sekunder peta permukiman kumuh dan hasil observasi lapangan. Hasil penelitian menunjukkan bahwa tingkat akurasi klasifikasi tertinggi dihasilkan dari layer Sentinel-2 GLCM 3x3 sebesar 56,26% pada daerah penelitian 1, sedangkan pada daerah penelitian 2 diperoleh dari layer Pleiades-1B GLCM 9x9 sebesar 66,17%.
Analisis Pengaruh Kerapatan Vegetasi terhadap Suhu Permukaan dan Keterkaitannya dengan Fenomena UHI Dewi Miska Indrawati; Suharyadi Suharyadi; Prima Widayani
Media Komunikasi Geografi Vol. 21 No. 1 (2020)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/mkg.v21i1.24429

Abstract

Kota Mataram adalahpusat dan ibukota dari provinsi Nusa Tenggara Barat yang tentunya menjadi pusat semua aktivitas masyarakat disekitar daerah tersebut sehingga menyebabkan peningkatan urbanisasi. Semakin meningkatnya peningkatan urbanisasi yan terjadi di perkotaan akan menyebabkan perubahan penutup lahan, dari awalnya daerah bervegetasi berubah menjadi lahan terbangun. Oleh karena itu, akan memicu peningkatan suhu dan menyebabkan adanya fenomena UHI dikota Mataram.Tujuan dari penelitian ini untuk mengetahui hubungan kerapatan vegetasi dengan kondisi suhu permukaan yang ada diwilayah penelitian dan memetakan fenomena UHI di Kota Mataram. Citra Landsat 8 OLI tahun 2018 yang digunakan terlebih dahulu dikoreksi radiometrik dan geometrik. Metode untuk memperoleh data kerapatan vegetasi menggunakan transformasi NDVI, LST menggunakan metode Split Window Algorithm (SWA) dan identifikasi fenomena urban heat island. Hasil penelitian yang diperoleh menunjukkan kerapatan vegetasi mempunyai korelasi dengan nilai LST. Hasil korelasi dari analisis pearson yang didapatkan antara kerapatan vegetasi terhadap suhu permukaan menghasilkan nilai -0,744. Fenomena UHIterjadi di pusat Kota Mataram dapat dilihat dengan adanya nilai UHI yaitu 0-100C. Semakin besar nilai UHI, semakin tinggi perbedaan LSTnya.
ESTIMASI PRODUKSI JAGUNG (Zea Mays L.) DENGAN MENGGUNAKAN CITRA SENTINEL 2A DI SEBAGIAN WILAYAH KABUPATEN JENEPONTO PROVINSI SULAWESI SELATAN Laode Muhamad Irsan; Sigit Heru Murti; Prima Widayani
Jurnal Teknosains Vol 8, No 2 (2019): June
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/teknosains.36885

Abstract

Production is a real benchmark in successful crop management which is the most important output economically. Currently, corn production estimates are generally done by conventional means through field surveys. This conventional way requires a high cost and a long time. Appropriate agricultural management requires precise and accurate information or data to increase production and economic benefits. Sentinel 2A remote sensing satellite data is potential to be used in assessment of corn production estimation. The purpose of this research is to make land use mapping and corn production estimation by using spectral approach. Estimated data were obtained from Sentinel 2A image by mapping land use and modeling of vegetation index (NDVI, SAVI, MSAVI, TSAVI, EVI, and ARVI) then compared with data of corn production in the field. The result of data analysis shows land use mapping using Sentinel 2A image has 91% confidence level. Calculation of production estimation can show the accuracy of 74% with RMSE 0.69. The highest correlation is estimated production with EVI index model with regression correlation equal to 74% which shows strong correlation on both variables. Estimated production of corn in 2017 in Jeneponto Regency is 178,660,69 tons.
Pola perkembangan morfologi fisik kota di cekungan bandung periode 2009 – 2018 Ramadhan Pasca Wijaya; Bowo Susilo; Prima Widayani
Jurnal Teknosains Vol 10, No 1 (2020): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/teknosains.45051

Abstract

Land development will be occur from time to time, the developments phenomenon will have either positive or negative impact. The impact of this phenomenon will affect various aspects, such as socioeconomic, mobility, land quality, and more. So the study on land development is required to evaluate and anticipate the negative impact on some region. To do evaluating and anticipating unwanted impacts a study can be carried out to become the basis for regional development or regional planning. one of them is to examine the pattern of urban development that will be used as a reference for regional development planning that will occur in the future. This study aims to analyze the development of urban physical morphology in Bandung Basin period 2009 - 2018. The method in this research is quantitative descriptive in the form of data collecting, data processing, modelling, and mapping. The research method is quantitative and qualitative in the form of data collection, data processing, modeling and mapping. The method of applying quadrant and burgess models to find the value of built-up land density that can reflect information on the phenomenon of built-up area development seen from the built-up area density in each agreed zone with geometric and quadrant models. The results in this research shows that the morphological structure of developed land in Bandung Basin is concentric with the highest density of 0.3459 km² which is centered in Cimahi and Bandung, also development is elongated and along the road with the majority of the land development create a leapfrog pattern, so it can be concluded that urban morphology in Bandung Basin is concentric with the linear development which is leapfrog.
Evidence Based Landslide Hazard Mapping in Purworejo using Information Value Model Approach Sudaryatno Sudaryatno; Prima Widayani; Totok Wahyu Wibowo; Bagus Wiratmoko; Wahyu Nurbandi
Forum Geografi Vol 33, No 1 (2019): July 2019
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/forgeo.v33i1.7592

Abstract

Purworejo District, which is located in Central Java, Indonesia, is prone to landslides. These are a natural hazard that often occur in mountainous areas, so landslide hazard analysis is needed to develop mitigation strategies. This paper elaborates on the use of an evidence-based statistical approach using the Information Value Model (IVM) to conduct landslide hazard mapping. The parameters of slope, aspect, elevation, rainfall, NDVI, distance from rivers, distance from the road network, and distance from faults were employed for the analysis, which was conducted based on a raster data environment, since the pixel is the most appropriate means to represent continuous data. Landslide evidence data were collected by combining secondary data and interpreting satellite imagery to identify old landslides. The IVM was successfully calculated by combining factors related to disposition to landslides and data on 19 landslide occurrences. The results helped produce a landslide susceptibility map for the northern and eastern parts of Purworejo District.
Water Catchment Zone Mapping for Watershed Management in Gesing Sub-Watershed, Purworejo Arief Wicaksono; Shandra S Pertiwi; Ade Febri Sandhini P; Prima Widayani
Journal of Applied Geospatial Information Vol 3 No 2 (2019): Journal of Applied Geospatial Information (JAGI)
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (5.281 KB) | DOI: 10.30871/jagi.v3i2.1163

Abstract

Water is a very important resource involved in almost all life processes on earth, especially for human life. The rapid growth of water consumption with a decrease in the quantity and quality of water sources certainly creates problems of water scarcity or even flooding, which already occurs in some areas of Indonesia. In the last decades, some areas in Purworejo District, Indonesia have experienced floods, landslides, and droughts. This condition indicates that there has been a water quantity problem in the watershed in Purworejo. This study tends to focus on water resource management in terms of management planning. The purpose of this research is to create a water catchment zone map with the integration of remote sensing methods and geographic information systems. Identification of potential water catchment considers several parameters, such as soil permeability, rainfall, soil surface type, slope, and groundwater level. The results map consists of five classes of water catchment zone in the Gesing Sub-watershed. The higher classes were found in the upper watershed and the center of the watershed, especially in the valley section of the river. The lower classes, such as in the center of the watershed were considered as suitable areas to protect the water quality. With the mapping of water catchment zone, it is expected that the government can make appropriate policies related to water resources management of each sub-watershed so that in the end the water supply problem-especially in terms of quantity-can be managed and controlled effectively.
ASSESSMENT AND COMPARISON OF MACHINE LEARNING ALGORITHM CAPABILITY IN SPATIAL MODELING OF DENGUE FEVER VULNERABILITY BASED ON LANDSAT IMAGE 8 OLI/TIRS Rahmat Azul Mizan; Prima Widayani; Nur Mohammad Farda
JURNAL GEOGRAFI Vol 13, No 2 (2021): JURNAL GEOGRAFI
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/jg.v13i2.21019

Abstract

The spread of dengue fever in Indonesia has become a major health problem. Spatial modeling for the distribution of dengue fever vulnerability is an important step to support the planning and mitigation of dengue fever in Indonesia. This study aims to assess and compare the capability of two machine learning algorithms to create a spatial model of dengue fever vulnerability. The research was conducted in Baubau City, Southeast Sulawesi Province by taking 129 cases that occurred from 2015 to February 2016. In this study, the model was created using R software and machine learning algorithms including support vector machine (SVM) and random forest (RF). The six modeling variables involved include land use/cover, BLFEI, NDVI, LST, rainfall and humidity extracted from Landsat 8 OLI/TIRS imagery as well as BMKG (Meteorological, Climatological, and Geophysical Agency of Indonesia) and BWS climate data. The model's capability was assessed using the Area Under Curve-Receiver Operating Characteristic (AUC-ROC) curve. The results of the research show that both algorithms provide excellent model accuracy with AUC values of 1 for SVM and 0.997 for RF with SVM as the best algorithm for modeling dengue fever in Baubau City.Keywords: Machine Learning, Vulnerability, Dengue Fever, Landsat 8 Image
PEMODELAN SPASIAL EPIDEMIOLOGI FASCIOLIASIS BERDASARKAN ANALISIS FAKTOR RISIKO SEBAGAI STRATEGI PENGELOLAAN TERNAK DI DAERAH ISTIMEWA YOGYAKARTA Vandam Caesariadi Bramdito; Hamim Zaky Hadibasyir; Seandrasto Abi Kharis Wardhani; Rina Febriany; Ira Nurmala Hani; Prima Widayani
GEOGRAPHIA : Jurnal Pendidikan dan Penelitian Geografi Vol. 2 No. 1 (2021): Juni
Publisher : Jurusan Pendidikan Geografi Universitas Negeri Manado

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1475.203 KB) | DOI: 10.53682/gjppg.v2i1.1119

Abstract

The government’s efforts of the Special Region of Yogyakarta (Daerah Istimewa Yogyakarta/DIY) government for self-sufficiency in meat certainly have obstacles, one of which is the productivity of livestock development which is hampered by parasitic diseases such as Fascioliasis. Fascioliasis is a disease caused by F. hepatica or F. gigantica. To find out the relationship between risk factors for Fascioliasis disease in a spatial region, it can use spatial modeling by integrating remote sensing technology and Geographic Information Systems (GIS). Spatial modeling can be used to determine the correlation between risk factors and can also be integrated with secondary data to obtain more comprehensive information. The method used in this study is a combination of various quantitative methods consisting of data processing based on remote sensing and GIS for risk factor analysis. Besides, some variables are not obtained quantitatively, namely livestock management variables obtained by structured interviews with livestock owners and veterinary experts. In general, DIY has a moderate risk level for Fascioliasis parasites. Although there are common levels of risk, the conditions of vulnerability and vulnerability of the constituents may differ, which implies different livestock management strategies.
The Compatibility Study of Sentinel 1 Multitemporal Analysis For River-Flood Detection, Study Case: Bogowonto River Muhammad Sufwandika Wijaya; Ulfa Aulia Syamsuri; Irfan Zaki Irawan; Prima Widayani; Projo Danoedoro; Sigit Heru Murti
Journal of Applied Geospatial Information Vol 7 No 2 (2023): Journal of Applied Geospatial Information (JAGI)
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jagi.v7i2.5365

Abstract

Flooding is a common natural disaster in Purworejo District, which can be caused by the overflowing of the Bogowonto River. The use of multitemporal analysis with Synthetic Aperture Radar (SAR) images, such as Sentinel-1, has the potential to aid in flood inundation detection for disaster mitigation in the area. However, there has not been any research examining the compatibility of flood inundation detection using multitemporal Sentinel-1 images with the flood susceptibility characteristics of the Bogowonto River. This study aims to evaluate this using a SWOT analysis. The results show that multitemporal analysis using Sentinel-1 images is not suitable for detecting flood inundation in the Bogowonto River due to difficulties in finding the right acquisition time at the time of the flood event. The duration of floods in the Bogowonto River is approximately 1-2 days, while the earliest reacquisition time for Sentinel-1 images for this study is 12 days. Additionally, Sentinel-1 images using band C have limitations in detecting floods under vegetation.