Claim Missing Document
Check
Articles

Perbandingan Efek Dilusi pada Nilai Waran dengan Menggunakan Metode Black-Scholes, Dilusi Black-Scholes, dan Pengamatan Variabel Benny Yong
Jurnal Silogisme : Kajian Ilmu Matematika dan Pembelajarannya Vol 1, No 1 (2016): Juni 2016
Publisher : Universitas Muhammadiyah Ponorogo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.438 KB) | DOI: 10.24269/js.v1i1.244

Abstract

Warrant is a financial derivative product issued by a firm on its own equity. Warrant is different from call options because the exercise price is paid to the firm and increases its assets and new shares of stock are issued at exercise. In this paper, warrant pricing is obtained using three methods; Black-Scholes, diluted Black-Scholes, and observable variables. Specifically, effect of dilution of warrant pricing would be compared each other with different characteristics of contract.Keywords: warrant, dilution, Black-Scholes, diluted Black-Scholes, observable variables
Pemodelan dan Perhitungan Premi Asuransi Keamanan Siber dengan Model Non-Markov Ivander Jeremy; Felivia Kusnadi; Benny Yong
Limits: Journal of Mathematics and Its Applications Vol 19, No 2 (2022)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v19i2.9000

Abstract

The development of information and communication technology not only has positive impacts, but also negative impacts, especially in the cybersecurity sector. Insurance companies need to create a relatively new insurance product, namely cybersecurity insurance. However, development of cybersecurity insurance still needs further investigation because there is no standard actuarial table like mortality table in life insurance. This article will discuss the modeling of infection and recovery process of a node and various other connected nodes in a computer network of the company using non-Markov model in the case of absence of dependence between cybersecurity risks, applying the Monte Carlo simulation method to obtain experimental data with various distributions – Weibull, Lognormal, and Inverse Gaussian – for the calculation of premium charged by insurance companies to insured companies interested in purchasing cybersecurity insurance products. Standard deviation premium principle and exponential utility premium principle are used to calculate premium. We concluded that the infection and recovery time with a long-tailed distribution has a lower premium price compared to those with a short-tailed distribution.
PEMBELAJARAN MATEMATIKA BERBASIS PERANGKAT LUNAK UNTUK PARA GURU DI SMP DAN SMA SANTA ANGELA BANDUNG Benny Yong
JURNAL PENGABDIAN KEPADA MASYARAKAT Vol 28, No 3 (2022): JULI-SEPTEMBER
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/jpkm.v28i3.36836

Abstract

Perkembangan teknologi yang sangat pesat cukup sulit diimbangi dengan upaya-upaya yang diperlukan masyarakat untuk memperoleh secara cepat keterampilan-keterampilan yang dibutuhkan untuk mengimplementasikan teknologi tersebut. Kesulitan ini dialami oleh para guru matematika. Banyak sekali perangkat lunak dan aplikasi yang diciptakan untuk menarik minat siswa dalam mempelajari matematika. Namun, untuk dapat menggunakan perangkat-perangkat lunak dan aplikasi-aplikasi tersebut, tenaga pendidik membutuhkan keterampilan yang memadai. Selain itu, para guru matematika, sebagai instruktur dalam kelas, membutuhkan pula keterampilan yang memadai dalam mengomunikasikan matematika, secara lisan dan terutama secara tertulis. Untuk membantu para guru memenuhi kebutuhan-kebutuhan tersebut, diselenggarakanlah kegiatan pendampingan pembelajaran matematika berbasis perangkat lunak dan juga penulisan matematis di sekolah menengah Santa Angela Bandung, dengan peserta para guru SMP dan SMA mata pelajaran matematika di sekolah tersebut. Sebagai hasil dari kegiatan ini, para guru menjadi semakin percaya diri dalam mengimplementasikan keterampilan-keterampilan berteknologi yang mereka peroleh ke dalam aktivitas-aktivitas di kelas bersama para siswa, sehingga para siswa dibekali dengan kompetensi-kompetensi yang sesuai dengan tuntutan zaman.
Penerapan Metode Klasifikasi Perangkat Lunak ArcMap pada Pemetaan Penyebaran Penyakit Dengue di Bandung Ananda Shafira; Farah Kristiani; Benny Yong
Limits: Journal of Mathematics and Its Applications Vol 20, No 1 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i1.9226

Abstract

Bandung is the city with the highest cases of Dengue disease in West Java. The effectiveness of the vaccine of Dengue disease are still not very high and there is no specific medicine for Dengue disease. In this study, we estimate the relative risk of Dengue disease in each sub-district in Bandung. The results of the relative risk estimation can be used as a reference to cure and prevent this disease more effective and efficient because we can focus more on critical area. The relative risks are estimated using two approaches, the frequentist with the Standardized Morbidity Ratio (SMR) model and Bayesian with the Localized model of Bayesian Conditional Autoregressive (CARBayes). The results show that the sub-districts with the highest and lowest relative risk are Cibeunying Kidul and Bandung Kulon, respectively. Furthermore, each sub-districts are depicted based on their relative risk using some classification methods. The classification methods from ArcMap software that will be used are Manual Interval, Defined Interval, Equal Interval, Quantile, Natural Breaks, and Standard Deviation. The classification results with each method show that each method has its own characteristics.
Simulasi Perhitungan Premi Asuransi Kesehatan dan Jiwa pada Penderita Covid-19 yang Dipengaruhi Model Penyebaran Penyakit Menular SIDRS Patrick Louis Lucin; Farah Kristiani; Benny Yong
Limits: Journal of Mathematics and Its Applications Vol 20, No 1 (2023)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v20i1.11419

Abstract

Determination of health and death insurance benefits according to the needs of policyholders is very important to determine from the beginning of making an insurance policy, especially for insurance that takes over the risk of being infected with the COVID-19 virus. Several factors that must be taken into account in determining the amount of benefits and premiums due to COVID-19 are the human population factor that is susceptible, infected and death in the SIDRS infectious disease spread model. In this study, the influence of these three factors on actuarial calculations is examined in more depth to produce an appropriate premium determination formula by taking into account two payment schemes in lump sum and annuity. From the simulation results by applying data on COVID-19 cases in Indonesia to determine the parameters of the SIDRS model, it is concluded that the premium with an annuity benefit payment scheme is smaller than the premium with a lump sum benefit scheme. Furthermore, it is also concluded that if the population of policyholders increases, the premium price will also be lower.
Bifurkasi Kodimensi dua dari model SIR untuk COVID-19 dan implikasi epidemiologisnya Owen, Livia; Jonathan Hoseana; Benny Yong
Communication in Biomathematical Sciences Vol. 6 No. 2 (2023)
Publisher : The Indonesian Bio-Mathematical Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/cbms.2023.6.2.6

Abstract

We study the codimension-two bifurcations exhibited by a recently-developed SIR-type mathematical model for the spread of COVID-19, as its two main parameters -the susceptible individuals' cautiousness level and the hospitals' bed-occupancy rate- vary over their domains. We use AUTO to generate the model's bifurcation diagrams near the relevant bifurcation points: two Bogdanov-Takens points and two generalised Hopf points, as well as a number of phase portraits describing the model's orbital behaviours for various pairs of parameter values near each bifurcation point. The analysis shows that, when a backward bifurcation occurs at the basic reproduction threshold, the transition of the model's asymptotic behaviour from endemic to disease-free takes place via an unexpectedly complex sequence of topological changes, involving the births and disappearances of not only equilibria but also limit cycles and homoclinic orbits. Epidemiologically, the analysis confirms the importance of a proper control of the values of the aforementioned parameters for a successful eradication of COVID-19. We recommend a number of strategies by which such a control may be achieved.
INOVASI PEMBELAJARAN MATEMATIKA MELALUI PENULISAN MATEMATIS, PEMECAHAN MASALAH MATEMATIS, DAN SOAL-SOAL MATEMATIKA BERBASIS HOTS UNTUK PARA GURU SMP DAN SMA SANTA ANGELA BANDUNG Yong, Benny; Hoseana, Jonathan; Owen, Livia; Salim, Daniel; Wijaya, Andreas Parama
JURNAL PENGABDIAN KEPADA MASYARAKAT Vol 30, No 1 (2024): JANUARI-MARET
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/jpkm.v30i1.49105

Abstract

Keterbatasan pengetahuan, kemampuan, dan keterampilan para guru di tingkat sekolah menengah merupakan salah satu kendala terbesar yang seringkali ditemui dalam pembelajaran matematika di Indonesia. Para guru terjebak dengan rutinitas harian tanpa dibekali dengan pelatihan, lokakarya, maupun pendampingan untuk memperbarui ilmu pengetahuan dalam rangka peningkatan kompetensi kognitif. Pada kegiatan pengabdian kepada masyarakat ini, dilakukan kegiatan pelatihan, workshop, dan pendampingan inovasi pembelajaran matematika dengan mitra SMP dan SMA Santa Angela Bandung. Kegiatan ini bertujuan untuk meningkatkan pengetahuan dan kemampuan guru akan tiga hal, yaitu penulisan matematis, strategi-strategi pemecahan masalah matematis, dan penyusunan soal-soal matematika berbasis keterampilan berpikir tingkat tinggi. Target pengabdian yang ingin dicapai adalah meningkatnya pemahaman konsep matematika para peserta yang tertuang dalam penulisan matematis yang baik dan benar, dimilikinya keterampilan dalam menyelesaikan masalah-masalah matematis dengan menggunakan strategi-strategi yang tersedia, dan perubahan jenis soal-soal yang digunakan dalam pembelajaran matematika dari soal-soal berbasis Lower Order Thinking Skills (LOTS) ke soal-soal berbasis Higher Order Thinking Skills (HOTS).
ANALISIS RISIKO RELATIF PENYEBARAN PENYAKIT DEMAM DENGUE DI KOTA BANDUNG MENGGUNAKAN MODEL POISSON: STUDI KASUS DATA RS SANTO BORROMEUS Yong, Benny; Kristiani, Farah; Irawan, Robyn
CREATIVE RESEARCH JOURNAL Vol 2 No 01 (2016): Creative Research Journal
Publisher : Badan Penelitian dan Pengembangan Daerah Provinsi Jawa Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34147/crj.v2i01.75

Abstract

Kota Bandung merupakan kota dengan kasus penyakit Demam Dengue (DD) terbanyak diantara kota-kota lainnya di Jawa Barat pada tahun 2013. Penelitian ini menganalisis tingkat risiko relatif dari penyebaran penyakit DD di kota Bandung dengan menerapkan model Poisson. Data pasien penyakit DD diambil dari RS Santo Borromeus Bandung sebanyak 2.032 pasien. Hasil analisis dengan menggunakan model Poisson menunjukkan bahwa penduduk di kecamatan Coblong hampir selalu berada pada tingkat risiko yang sangat tinggi untuk terserang penyakit DD pada setiap bulan untuk masing-masing stadium, sebaliknya penduduk di kecamatan Cinambo hampir selalu berada pada tingkat risiko yang sangat rendah untuk terserang penyakit DD. Untuk stadium awal, stadium lanjut, dan seluruh stadium, banyak kecamatan di kota Bandung yang mengalami peningkatan kategori tingkat risiko dari bulan Maret ke April yang merupakan musim pancaroba. Sementara untuk stadium lanjut dan seluruh stadium, banyak kecamatan di kota Bandung yang mengalami penurunan kategori tingkat risiko dari bulan Agustus ke September yang merupakan musim kemarau. Hasil estimasi dari selang kepercayaan 95% menunjukkan bahwa rentang selang terbesar selalu berada di kecamatan Bandung Wetan dan terjadi pada bulan April. Kondisi ini berlaku untuk stadium awal, stadium lanjut, dan seluruh stadium.
Aplikasi Teori Bilangan dalam Permainan NIM Yong, Benny; Stefanus, Caesar; Hari, Vincent
JMPM: Jurnal Matematika dan Pendidikan Matematika Vol 1 No 2: September
Publisher : Prodi Pendidikan Matematika Universitas Pesantren Tinggi Darul Ulum Jombang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26594/jmpm.v1i2.595

Abstract

Di dunia ini terdapat banyak permainan yang berhubungan dengan Matematika, misalkan permainan kartu bridge, domino, catur, NIM, dan masih banyak lagi. Permainan NIM adalah suatu permainan strategi yang dimainkan oleh dua pemain dimana setiap pemain secara bergantian mengambil paling sedikit satu objek dengan aturan-aturan tertentu. Kemenangan permainan ini bergantung pada berapa banyak objek yang tersedia dan siapa yang bermain dahulu. Makalah ini akan menyajikan empat buah permainan NIM; NIM Maksima, NIM SatuEmpat, NIM Satu-Tiga-Empat, dan NIM Satu-Tiga-Lima-Tujuh. Pada permainan NIM ini, peranan Matematika dalam hal ini teori bilangan adalah menentukan suatu strategi untuk memenangkan permainan.
APPLICATION AND PERFORMANCE COMPARISON OF MULTI-OUTPUT MACHINE LEARNING FOR NUMERICAL-NUMERICAL AND NUMERICAL-CATEGORICAL OUTPUTS Joan, Karin; Irawan, Robyn; Yong, Benny
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1421-1432

Abstract

Multi-Output Machine Learning is an advancement of traditional machine learning, designed to predict multiple output variables simultaneously while considering the relationships between these output variables. Multi-Output Machine Learning is essential as a decision support tool because decision-making in many problems generally considers multiple factors. The use of Multi-Output Machine Learning is more advantageous than conventional machine learning in terms of time efficiency, addressing data limitations, and ease of maintenance. These benefits will significantly impact cost savings for industries utilizing Big Data. The models used in this research include Multivariate Regression Tree, Multivariate Random Forest, and Multi-Output Neural Network. The Multivariate Regression Tree and Multivariate Random Forest are developed by modifying the splitting function using Mahalanobis distance. The topological changes introducing shared and private hidden layers are the key development of the Multi-Output Neural Network. The prediction results indicated a trade-off in error between two output variables when comparing the Multivariate Regression Tree and Multivariate Random Forest with their single output counterparts. Meanwhile, the Multi-Output Neural Network model successfully improved the prediction results for both output variables. This research also introduces Mixed Multi-Output Machine Learning, which can predict numerical and categorical output variables. The Mixed Multi-Output Machine Learning model utilizes the logit values from the Logistic Regression model to extend the range of prediction results beyond the 0 to 1 interval. Multi-Output Neural Network is the sole model that produces predictions with relatively small errors and high accuracy values.