Claim Missing Document
Check
Articles

Penerapan Metode Klasifikasi Perangkat Lunak ArcMap pada Pemetaan Penyebaran Penyakit Dengue di Bandung Ananda Shafira; Farah Kristian; Benny Yong
Limits: Journal of Mathematics and Its Applications Vol. 20 No. 1 (2023): Limits: Journal of Mathematics and Its Applications Volume 20 Nomor 1 Edisi Ma
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Bandung is the city with the highest cases of Dengue disease in West Java. The effectiveness of the vaccine of Dengue disease are still not very high and there is no specific medicine for Dengue disease. In this study, we estimate the relative risk of Dengue disease in each sub-district in Bandung. The results of the relative risk estimation can be used as a reference to cure and prevent this disease more effective and efficient because we can focus more on critical area. The relative risks are estimated using two approaches, the frequentist with the Standardized Morbidity Ratio (SMR) model and Bayesian with the Localized model of Bayesian Conditional Autoregressive (CARBayes). The results show that the sub-districts with the highest and lowest relative risk are Cibeunying Kidul and Bandung Kulon, respectively. Furthermore, each sub-districts are depicted based on their relative risk using some classification methods. The classification methods from ArcMap software that will be used are Manual Interval, Defined Interval, Equal Interval, Quantile, Natural Breaks, and Standard Deviation. The classification results with each method show that each method has its own characteristics.
INOVASI PEMBELAJARAN MATEMATIKA MELALUI PENULISAN MATEMATIS, PEMECAHAN MASALAH MATEMATIS, DAN SOAL-SOAL MATEMATIKA BERBASIS HOTS UNTUK PARA GURU SMP DAN SMA SANTA ANGELA BANDUNG Yong, Benny; Hoseana, Jonathan; Owen, Livia; Salim, Daniel; Wijaya, Andreas Parama
JURNAL PENGABDIAN KEPADA MASYARAKAT Vol. 30 No. 1 (2024): JANUARI-MARET
Publisher : Universitas Negeri Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24114/jpkm.v30i1.49105

Abstract

Keterbatasan pengetahuan, kemampuan, dan keterampilan para guru di tingkat sekolah menengah merupakan salah satu kendala terbesar yang seringkali ditemui dalam pembelajaran matematika di Indonesia. Para guru terjebak dengan rutinitas harian tanpa dibekali dengan pelatihan, lokakarya, maupun pendampingan untuk memperbarui ilmu pengetahuan dalam rangka peningkatan kompetensi kognitif. Pada kegiatan pengabdian kepada masyarakat ini, dilakukan kegiatan pelatihan, workshop, dan pendampingan inovasi pembelajaran matematika dengan mitra SMP dan SMA Santa Angela Bandung. Kegiatan ini bertujuan untuk meningkatkan pengetahuan dan kemampuan guru akan tiga hal, yaitu penulisan matematis, strategi-strategi pemecahan masalah matematis, dan penyusunan soal-soal matematika berbasis keterampilan berpikir tingkat tinggi. Target pengabdian yang ingin dicapai adalah meningkatnya pemahaman konsep matematika para peserta yang tertuang dalam penulisan matematis yang baik dan benar, dimilikinya keterampilan dalam menyelesaikan masalah-masalah matematis dengan menggunakan strategi-strategi yang tersedia, dan perubahan jenis soal-soal yang digunakan dalam pembelajaran matematika dari soal-soal berbasis Lower Order Thinking Skills (LOTS) ke soal-soal berbasis Higher Order Thinking Skills (HOTS).
FLOOD REINSURANCE PREMIUM PRICING BASED ON THE STANDARD DEVIATION PRINCIPLE WITH POT-BASED THRESHOLDS FOR MORTALITY AND PROPERTY DAMAGE RISKS Anggriawan, Vanessa; Permana, Ferry Jaya; Yong, Benny
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0347-0366

Abstract

Disasters that occur in Indonesia lead to financial loss. One approach to mitigating the financial impact is through the utilization of natural disaster insurance. Although natural disasters occur with a relatively small frequency, the associated losses are substantial. Insurance companies need to carefully consider the characteristics of natural disaster data, as these events can lead to significant claims and potentially result in the bankruptcy of insurance companies. Insurance companies can reduce the risk of bankruptcy by transferring some risk to reinsurance companies. In this paper, the disaster reinsurance premium is determined by considering both the mortality and economic risks using the peaks over threshold (POT) model under the standard deviation principle. The Poisson, generalized Pareto, and lognormal distributions are used to determine the premium, with parameters estimated using the maximum likelihood method. A simulation analysis is conducted using synthetic data generated with RStudio software, which includes the frequency of floods per year over 20 years, as well as the number of deaths and the number of houses damaged in each flood event. The threshold is determined using the percentage method, where 10% of the data is considered extreme values. The POT model is applied to various retention cases. The simulation results show that the risk of the number of damaged houses has a greater impact on the premium amount that the insurance company must pay to the reinsurance company than the risk of the number of deaths. Additionally, cases with retention values below the threshold result in the highest reinsurance premiums, while cases with retention values above the threshold result in the lowest reinsurance premiums. This paper also shows that the reinsurance premium changes almost linearly with the increase in the extreme value percentage. This study is among the first to apply the peaks over threshold model in combination with multiple distributions for reinsurance premium estimation in the Indonesian context. The findings provide new insights into the sensitivity of reinsurance premiums to damage thresholds and retention levels, offering a practical tool for insurers in disaster-prone regions.