Claim Missing Document
Check
Articles

KLASTERISASI DOKUMEN MENGGUNAKAN WEIGHTED K-MEANS BERDASARKAN RELEVANSI TOPIK Riduwan, Muhammad; Fatichah, Chastine; Yuniarti, Anny
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a892

Abstract

Jumlah penelitian di dunia mengalami perkembangan yang pesat, setiap tahun berbagai peneliti dari penjuru dunia menghasilkan karya ilmiah seperti makalah, jurnal, buku dsb. Metode klasterisasi dapat digunakan untuk mengelompokkan dokumen karya ilmiah ke dalam suatu kelompok tertentu berdasarkan relevansi antar topik. Klasterisasi pada dokumen memiliki karakteristik yang berbeda karena tingkat kemiripan antar dokumen dipengaruhi oleh kata-kata pembentuknya. Beberapa metode klasterisasi kurang memperhatikan nilai semantik dari kata. Sehingga klaster yang terbentuk kurang merepresentasikan isi topik dokumen. Klasterisasi dokumen teks masih memiliki kemungkinan adanya outlier karena pemilihan fitur teks yang tidak optimal. Oleh karena itu dibutuhkan pemrosesan data yang tepat serta metode yang mengoptimalkan hasil klaster. Penelitian ini mengusulkan metode klasterisasi dokumen menggunakan Weighted K-Means yang dipadukan dengan Maximum Common Subgraph. Weighted k-means digunakan untuk klasterisasi awal dokumen berdasarkan kata-kata yang diekstraksi. Pembentukan Weighted K-Means berdasarkan perhitungan Word2Vec dan TextRank dari kata-kata dalam dokumen. Maximum common subgraph merupakan tahap pembentukan graf yang digunakan dalam penggabungan klaster untuk menghasilkan klaster baru yang lebih optimal. pembentukan graf dilakukan dengan perhitungan nilai Word2vec dan Co-occurrence dari klaster. Representasi topik dokumen tiap klaster dapat dihasilkan dari pemodelan topik Latent Dirichlet Allocation (LDA). Pengujian dilakukan dengan menggunakan dataset artikel ilmiah dari Scopus. Hasil dari analisis Koherensi topik menunjukkan nilai koherensi usulan metode adalah 0.532 pada dataset 1 yang bersifat homogen dan 0.472 pada dataset 2 yang bersifat heterogen.
CLASSIFICATION OF LUNG AND COLON CANCER TISSUES USING HYBRID CONVOLUTIONAL NEURAL NETWORKS Nisa', Chilyatun; Suciati, Nanik; Yuniarti, Anny
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 22, No. 1, January 2024
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v22i1.a1225

Abstract

Colon and lung cancers are two highly lethal kinds of cancer which can often coexist and pose a new challenge for accurate diagnosis. While research often concentrates on detecting a single cancer in a specific organ, this study proposes an innovative machine-learning approach to identify both colon and lung cancers. The objective is to create a hybrid machine learning classification model to enhance diagnostic precision. The LC25000 dataset comprises 25,000 color histopathological image samples of lung and colon cell tissues, indicating the presence or absence of cancer (adenocarcinoma). Image features are extracted using the pre-trained VGG-16 model. The cancer type is identified through three machine learning classification algorithms: Stochastic Gradient Descent (SGD), Random Forest (RF), and K-Nearest Neighbor (KNN). The model's evaluation employed a 10-fold cross-validation technique, with CNN-SGD exhibiting the highest performance based on evaluation metrics. On a scale of 0 to 100, it scored 99.8 for Area Under Curve (AUC) and 98.88 for Classification Accuracy (CA). CNN-RF, a model with performance closely following CNN-SGD, demonstrates training times 58.3 seconds faster than CNN-SGD. Meanwhile, CNN-KNN ranks last among the models evaluated in this study based on its F1, recall, AUC, and CA scores.
Audio Feature Analysis and Selection for Deception Detection in Court Proceedings Mafazy, Muhammad Meftah; Fatichah, Chastine; Yuniarti, Anny
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 23, No. 1, January 2025
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v23i1.a1250

Abstract

Deception detection is a method to determine whether a person is lying or not. One lie detector is a polygraph that measures human physiology, such as pulse and blood pressure. However, polygraphs have a problem in that they cannot be measured based on human psychology, such as speech and intonation. Therefore, audio deception detection is required, and this can be measured based on human psychology. This research will extract audio features, such as the Mel Frequency Cepstral Coeffi-cient (MFCC), Jitter, Fundamental Frequency (F0), and Perceptual Linear Prediction (PLP), from the Real-Life Trial dataset, which comprises 121 audio data. From the extraction results in the form of numerical data totaling 6387 features, various feature-selection methods are employed, such as Feature Importance (FI), Principal Component Analysis (PCA), Information Gain, Chi-Square, and Recursive Feature Elimination (RFE). After feature selection, the selected features are input to machine learning models, such as random forest and support vector machine (SVM). After model testing, metrics such as accuracy, precision, recall, and F1 score were evaluated, as well as statistical evaluation, to assess the developed model. Results from this experiment show that the deception detection model is improved after a feature selection process to reduce irrelevant features. Comparing the accuracy, Chi-Square achieves a significantly higher result, reaching up to 92% with an improvement of 24.32%, surpassing the SVM model's accuracy of 67.57% before feature selection. In contrast, the RFE technique yielded the best accuracy of 86%, with an increase of 13.52%, building upon its baseline accuracy of 72.97%.
Enhancing Face Detection Performance In 360-Degree Video Using Yolov8 with Equirectangular Augmentation Techniques Ardy, Rizky Damara; Yuniarti, Anny; Sari, Christy Atika
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 23, No. 1, January 2025
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v23i1.a1255

Abstract

This study aims to enhance face detection performance in 360-degree videos by utilizing advanced image augmentation techniques with the YOLOv8 algorithm, which is effective for real-time object detection. Acknowledging the unique challenges posed by equirectangular projection, this research introduces a novel equirectangular augmentation method specifically designed for this medium. Our findings demonstrate a remarkable 1.346% improvement in detection accuracy in Equirectangular Projection (ERP) settings compared to default YOLOv8 augmentation strategies. This significant enhancement not only addresses the geometric distortions inherent in panoramic video formats but also emphasizes the critical need for tailored augmentation approaches to improve face detection in complex environments. By showcasing the effectiveness of these customized methods, this research contributes to the growing field of deep learning applications for immersive video technologies, with implications for sectors like security, virtual reality, and interactive media. Ultimately, this work highlights the potential of innovative augmentation techniques to ensure robust face detection in challenging visual contexts.
Revolusi Digital Peningkatan Daya Saing Bisnis Santridigipreneur Melalui Eksplorasi Aplikasi Virtual Reality Arifiani, Siska; Hidayat, Alifiansyah Arrizqy; Khotimah, Wijayanti Nurul; Nisa, Khairun; Amaliah, Bilqis; Yuniarti, Anny; Riduwan, Muhammad; Sungkono, Kelly Rossa; Lidiawaty, Berlian Rahmy; Nasution, Anita Hakim
Sewagati Vol 9 No 3 (2025)
Publisher : Pusat Publikasi ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j26139960.v9i3.2661

Abstract

Event ”One Pesantren One Product 2023” mengajarkan santri-santri untuk menjadi pengusaha mandiri yang mampu melihat peluang di era globalisasi. Dari event OPOP 2023 dihasilkan Santri Digitalpreneur (Santridigipreneur) yang dapat mencetak para santri menjadi pengusaha dan marketer di era digital. Oleh karena itu, diperlukan revolusi digital peningkatan daya saing bisnis Santridigipreneur melalui eksplorasi aplikasi Virtual Reality yang dapat meningkatkan kemampuan santri dalam berbisnis dengan melakukan roleplay khusus bersama tim sehingga pembinaan bisnis terasa lebih nyata meskipun dilakukan dalam dunia virtual (Virtual Reality). Selain itu dengan Santridigipreneur Virtual Reality, memberikan pengalaman yang signifikan dalam melakukan negosiasi antar-supplier dan stakeholder bisnis hingga kepada customer, kegiatan ini mengintegrasikan Pesantren dalam regional Jawa Timur. Dalam SVR : Santridigipreneur Virtual Reality ini, dilakukan pilot project untuk mengukur dampak pemanfaatan teknologi VR sebagai media pembelajaran kepada para santri di Pondok Pesantren Mathlaul Amin, Sumenep, Madura. Santri pada pondok pesantren tersebut diminta untuk memilih bidang minat usaha, kemudian mencoba menggunakan aplikasi sesuai dengan bidang usahanya. Teknologi VR terbukti dapat meningkatkan minat santri dalam belajar digipreneur, berdasarkan hasil VRSQ yang menunjukkan tingkat motion sickness masih dapat ditoleransi. Ke depan, kurikulum digipreneur berbasis VR dapat mulai dikembangkan dan diterapkan. Namun, ketersediaan perangkat VR perlu dipertimbangkan karena harganya yang masih cukup mahal.
Skin Cancer Classification Using a Hybrid Pre-trained CNN with Random Forest Classifier Kostidjan, Okky Darmawan; Purwanto, Yudhi; Yuniarti, Anny
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 8 No 4 (2024): August 2024
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v8i4.5857

Abstract

Skin cancer, a leading cause of global mortality with 10 million deaths annually, is projected to increase rapidly if not diagnosed early. Traditional diagnosis relies on visual evaluation and histopathology, which are subjective and time-consuming. Recent advances in Convolutional Neural Networks (CNN) enable automated, accurate image analysis for early identification. This study explores pre-trained CNN models, including DenseNet-201, InceptionV3, MobileNet, ResNet50, and VGG16, by modifying them to better identify skin lesions as malignant or benign. The proposed models outperformed the state-of-the-art CNN models evaluated on publicity with traditional test data. The proposed models achieved 94.20% accuracy, which is higher than that of traditional CNN models.
Performance of Contrast Adjustment Techniques on The Face Recognition Method with Test Data Under Varying Lighting Conditions Nugroho, Budi; Maulana, Hendra; Yuniarti, Anny
IJCONSIST JOURNALS Vol 6 No 2 (2025): March
Publisher : International Journal of Computer, Network Security and Information System

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/ijconsist.v6i2.130

Abstract

In the face recognition process influenced by lighting, the application of the image enhancement process at the preprocessing stage plays an important role in normalizing image contrast so that the quality of the input image becomes better. This step is expected to improve face recognition performance. In this study, we implement a lighting-influenced face recognition method, namely Robust Regression, and test several image enhancement techniques in the preprocessing phase to determine their effects on face recognition performance under different image lighting conditions, including Contrast-limited Adaptive Histogram Equalization (CLAHE), Histogram Equalization (Histeq), and Image Intensity Adjustment (Imadjust). HE uses a global technique that adjusts the overall intensity of the image. CLAHE uses a local technique that adjusts the intensity of pixels based on their surrounding areas. Meanwhile, the Imadjust function adjusts the intensity of image pixels based on the specified minimum and maximum values. The experiment is conducted using the AR Face Database which contains images affected by lighting factors. Lighting conditions include several categories, namely low, medium, high, and very high (extreme) lighting conditions. The experimental scenario is carried out by comparing the results of face recognition using several preprocessing techniques on each test data. The experimental results show that image enhancement techniques improve the performance of face recognition. The face recognition approach that adds the CLAHE technique to the preprocessing shows the highest performance of 95.87%. Meanwhile, the face recognition approach that adds the Imadjust technique to the preprocessing shows the lowest performance of 84.38%.
HYPERPARAMETER OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORK FOR FLOWER IMAGE CLASSIFICATION USING GRID SEARCH ALGORITHMS Wibowo, Della Aulia; Suciati, Nanik; Yuniarti, Anny
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 1 (2024): JUTIF Volume 5, Number 1, February 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.1.1798

Abstract

Indonesia is a country with a tropical climate that greatly affects agriculture. Flowering plants are estimated to account for 25% of species in Indonesia; there are 416 families, 13,164 genera, and 295,383 species of flowering plants. Classification of profit types is a time- and knowledge-intensive job. Convolutional Neural Network (CNN) has revolutionized the field of computer vision by improving the accuracy of image, text, voice, and video recognition. This research is focused on developing a CNN model for Indonesian flower images by optimizing hyperparameters combined with a grid search algorithm and default parameters, as well as comparing two different CNN architectures, namely VGG16 and MobileNetV2. This research aims to improve the classification accuracy of Indonesian flower images by optimizing hyperparameters. The results of CNN research with hyperparameters combined with a grid search algorithm and using data augmentation resulted in MobileNetV2 as the best model. Grid search is designed to get the best value of each parameter. The performance of the grid search algorithm can produce an optimal combination of parameters, with a test accuracy of 89.62%..
Co-Authors Achmad Chabiburrohman Achmad Fahriza Agus Arifin Agus Arifin, Agus Agus Z. Arifin, Agus Z. Agus Zainal Arifin Agus Zainal Arifin Ahmad Mustofa Hadi Ahmad Mustofa Hadi Ahmad Raihan Muzakki Akira Asano Akira Taguchi Alifiansyah Arrizqy Hidayat Amrullah, Muhammad Syiarul Andi Baso Kaswar Andi Baso Kaswar Anindhita Sigit Nugroho Anindita Sigit Nugroho Anita Hakim Nasution Ardy, Rizky Damara Arif Fathur Mahmuda Arifiani, Siska Arifzan Razak Aris Fanani Aris Tjahyanto Arya Yudhi Wijaya Berlian Rahmy Lidiawaty Betty Natalie Fitriatin Bilqis Amaliah Budi Nugroho Budi Nugroho Chastine Fatichah Christy Atika Sari Darlis Heru Mukti Darlis Herumurti Devira Wiena Pramintya Dhian Satria Yudha Kartika Diana Suteja Dini Adni Navastara, Dini Adni Eva Yulia Puspaningrum Fawwaz Abdulloh Al-Jawi Feni Siti Fauziah2 Fetty Tri A. Fiandra Fatharany Gulpi Qorik Oktagalu Pratamasunu Hadziq Fabroyir Handayani Tjandrasa Hani Ramadhan Hidiyah Ayu Ratna Ma’rufah Hudan Studiawan I Made Satria Bimantara I Made Widiartha I Putu Gede Hendra Suputra Imam Kuswardayan Ishardan Ishardan Isye Arieshanti Kelly Rossa Sungkono Khairun Nisa Kostidjan, Okky Darmawan Lutfiani Ratna Dewi M. Ali Fauzi M. Ali Fauzi Mafazy, Muhammad Meftah Maulana, Hendra MIFTAHOL ARIFIN, MIFTAHOL Mohamad Dion Tiara Muhammad I. Rosadi, Muhammad I. Muhammad Rayyaan Fatikhahur Rakhim Muhammad Riduwan Nadya Anisa Syafa Nafiiyah, Nur Nanik Suciati Nisa', Chilyatun Oviyanti Mulyani Pasnur Pasnur Purwanto, Yudhi Puspitasari, Leny Ratri Enggar Pawening Reginawanti Hindersah Ridho Rahman Hariadi Rindah Febriana Suryawati Sahmanbanta Sinulingga Saiful Bahri Musa Saprina Mamase Saputra, Wahyu Syaifullah Jauharis Siska Arifiani Soegeng Soetedjo Sofyan Sauri, Sofyan Takashi Nakamoto Wahyu Syaifullah Jauharis Saputra Wibowo, Della Aulia Wijayanti Nurul K Wijayanti Nurul Khotimah