Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : BERKALA FISIKA

Karakterisasi Zona Sliding Di Perbukitan Ranggawulung Subang Dengan Metoda Geolistrik Tahanan Jenis Susanto, Kusnahadi; Zaenudin, Ahmad
BERKALA FISIKA Vol 13, No 2 (2010): Berkala Fisika, Edisi Khusus
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.225 KB)

Abstract

Subang Ranggawulung Hills is a road connecting Bandung- Subang which is landslide-prone. Landslides have occurred in the area and now the potential for ground movement is still visible which is characterized by crack and wave roads and buildings sideway. This study characterizes the sliding zone and the direction of movement of ground geoelectric resistivity method. Geoelectrical resistivity method to detect the existence of a sliding zone of the layer surface lapsed causes that caused Landslides. Of geoelectric resistivity cross-section indicates that the contact area between the layers with a certain slope at a depth of about 3-10 m below ground surface. Fields marked with a contact layer of low resistivity value of about 5-10 m which is consistent on all tracks. By observing these results can be seen that the hills Ranggawulung potential for the occurrence of landslides, although slow moving. Key words: landslides, low resistivity
Koreksi Gaya Berat Akibat Curah Hujan Pada Pengukuran Gaya Berat Mikro Antar-Waktu Lapangan Panas Bumi Kamojang 2006-2007 Zaenudin, Ahmad
BERKALA FISIKA Vol 13, No 2 (2010): Berkala Fisika, Edisi Khusus
Publisher : BERKALA FISIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (881.087 KB)

Abstract

Shallow groundwater level changes cause seasonal gravity anomaly. Changes in groundwater level is directly related to rainfall, when heavy rainfall, groundwater level rises rapidly and then declined gradually. Gravity anomaly due to the season is important to take into account noise. Changes in groundwater level due to rainfall is calculated using empirical equations, and the Gravity response calculated using the approach of an infinite Bouguer slab correction by entering the porosity factor. The rainy season in the Kamojang geothermal field occur between November to June and dry season between July to October. The highest rainfall in 24 hours occurred on December 8 by 75 mm. From the empirical calculations showed that changes in groundwater level due to rainfall period November 2006-June 2006 amounted to -1.502 m and July 2007-June 2006 amounted to +0.396 m. Based on the approach slab Bouguer corrected gravity anomaly not to cause inter-time respectively -18.89 and +5.98 mikrogal mikrogal for porosity of 30%. Changes in groundwater level is negative (a reduction of groundwater) caused gravity anomaly time inter-negative, and vice versa. Correction of the gravity anomaly due to inter-time rainfall should not be ignored because of the gravity anomaly at the time inter-geothermal field is usually small.   Key words: rainfall, groundwater level, inter-period gravity anomaly