Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Jurnal Ilmiah Sains

CUBIC AND QUADRATIC POLYNOMIAL ON JULIA SET WITH TRIGONOMETRIC FUNCTION Jullia Titaley; Tohap Manurung; Henriette D Titaley
JURNAL ILMIAH SAINS Volume 18 Nomor 2, Oktober 2018
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (816.115 KB) | DOI: 10.35799/jis.18.2.2018.21555

Abstract

CUBIC AND QUADRATIC POLYNOMIAL ON JULIA SET WITH TRIGONOMETRIC FUNCTIONABSTRACTJulia set are defined by iterating a function of a complex number and is generated from the iterated function . We investigate in this paper the complex dynamics of different functions and applied iteration function system to generate an entire new class of julia set. The purpose of this research is to make variation of Cubic and Quadratic polynomial on Julia Set and the two obvious to investigate from julia set are Sine and Cosine function. The results thus obtained are innovative and studies about different behavior of two basic trigonometry.Keywords : Julia Set, trigonometric function, polynomial function  POLINOMIAL  KUBIK DAN KUADRATIK PADA HIMPUNAN JULIA DENGAN FUNGSI TRIGONOMETRI ABSTRAKHimpunan Julia didefiniskan oleh fungsi iterasi dari bilangan kompleks dan dibangkitkan dari fungsi iterasi . Kami melakukan penelitian dalam penulisan ini tentang sistem dinamik kompleks dari fungsi yang berbeda dengan iterasi yang diterapkan untuk menghasilkan kelas baru dari himpunan Julia. Tujuan dari penelitian ini adalah untuk membuah kelas baru himpunan Julia dengan fungsi polinomial kubik dan kuadratik dengan fungsi sinus dan kosinus. Hasil akhir dari penelitian ini ada menemukan inovatif baru dari himpunan Julia dengan menggunakan dua fungsi trigonometri.Kata kunci: Julia set, fungsi trigonometri, fungsi polinomial
PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x^2 = y^3 + 2185 Vone K Kadademahe; Mans L. Mananohas; Jullia Titaley
JURNAL ILMIAH SAINS Volume 19 Nomor 1, April 2019
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.911 KB) | DOI: 10.35799/jis.19.1.2019.22343

Abstract

 PENGGUNAAN TEORI KEKONGRUENAN DALAM MEMPERKECIL RUANG PENCARIAN SOLUSI PERSAMAAN DIOPHANTINE x2 = y3 + 2185ABSTRAKPada tahun 2014 Ulas mengajukan sebuah konjektur mengenai solusi bilangan bulat dari persamaan Diophantine tipe Ramanujan-Nagell x2 = y3 + 2185. Tujuan penelitian ini adalah untuk memperkecil ruang pencarian solusi persamaan Diophantine tipe Ramanujan- Nagell x2 = y3 + 2185 dengan x sub himpunan bilangan ganjil anggota G3 dan  G4, dimana G3={x∈bilangan ganjil |x≡1 mod 8} dan G4={x∈bilangan ganjil |x≡7 mod 8}   dengan metode membagi y menjadi 4 kasus, yaitu : FPB(y,8)=1, FPB(y,8)=2, FPB(y,8)=4, FPB(y,8)=8. Dari hasil penelitian menunjukkan bahwa untuk x∈G3 dengan FPB(y,8)=1,  FPB(y,8)=4, FPB(y,8)=8, tidak mempunyai solusi bilangan bulat, sedangkan untuk  FPB(y,8)=2 meskipun belum diperoleh kesimpulan akhir tapi ruang pencarian solusi telah berhasil diperkecil untuk x dan y dengan cara melakukan transformasi x=8b+1, y=4a – 2 , apabila a|b atau b|a, maka persamaan Diophantine x2 = y3 + 2185 hanya mempunyai satu pasang solusi, yaitu : (x,y)=(49,6), dan untuk x∈G4 dengan FPB(y,8)=1, FPB(y,8)=4, FPB(y,8)=8, FPB(y,8)=2 dengan melakukan transformasi x=8q+7, y=4p – 2  untuk p|q  atau q|p tidak mempunyai solusi bilangan bulat. Penelitian ini telah berhasil memperkecil ruang untuk x dan y.Kata kunci : Teorema Euler, Persamaan Diophantine, dan Diophantine Ramanujan - Nagell
EKSISTENSI RUANG VEKTOR ATAS LAPANGAN TERHADAP MODUL BEBAS Chrisanty Y Tambayong; Jullia Titaley; Rinancy Tumilaar
JURNAL ILMIAH SAINS Volume 19 Nomor 1, April 2019
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (522.141 KB) | DOI: 10.35799/jis.19.1.2019.22536

Abstract

EKSISTENSI RUANG VEKTOR ATAS LAPANGANTERHADAP MODUL BEBAS ABSTRAKModul merupakan perluasan dari ruang vektor.  Suatu Ruang vektor  atas lapangan  merupakan suatu himpunan vektor – vektor dengan dua operasi yaitu penjumlahan dan perkalian dengan skalar. Sebarang ruang vektor atas lapangan  dapat dipandang sebagai modul atas ring  Tetapi tidak semua modul dapat dinyatakan sebagai ruang vektor atas lapangan. Tujuan penelitian ini adalah untuk memberikan counter example bahwa tidak semua modul merupakan ruang vektor atas lapangan.  Dari hasil penelitian dapat disimpulkan bahwa setiap modul yang memiliki basis merupakan ruag vektor atas lapangan adalah modul bebas.Kata kunci : Ruang vektor, modul, dan modul bebas THE EXISTENCE OF VECTOR SPACE OVER A FIELD OF FREE MODULE ABSTRACTModule is an extension of a vector space. A vector space over a field  is a set of vectors with two binary operation. The binary operation  is addition and scalar multiplication. A vector space is a module over a field, many of basic concepts that we defined for vector space can also be defined module. But it’s not all module vector space over a field. The purpose of this tesis is for give counter example that it’s not all module vector space over a field.  From the result of this research show that a module have bases is vector space over a field is free module.Keywords : vector space, module, free module
EXPERT SYSTEM FOR DIAGNOSING DISEASE USING FUZZY LOGIC Jullia Titaley
Jurnal Ilmiah Sains Volune 8 Nomor 1, April 2008
Publisher : Sam Ratulangi University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35799/jis.v8i1.48091

Abstract

In this research, a system for diagnosing disease was designed and implemented. This system will be used  for paramedics expert. They need to enter many symptoms. The symptoms are classified into two categories, crisps and fuzzy. The fuzzy symptoms are input using slider. It is used  for uncertainty symptoms. Building this system, needs three steps knowledge acquisition, knowledge representation and then building knowledge base, and finally  building inference engine. This system uses standard class operator, algebraic class operator, and Einstein class operator. Implication rule uses Dienes-Rescher and for combine all rules use Mamdani Combination. Based on all symptom that have been entered using standard class operator, this system is a success for diagnosing disease and its inference value. Keywords : diagnose disease, expert system, fuzzy logic.