Claim Missing Document
Check
Articles

Found 33 Documents
Search

Utilization of EfficientNet-B0 to Identify Oncomelania Hupensis Lindoensis as a Schistosomiasis Host Lamadjido, Moh. Raihan Dirga Putra; Laila, Rahmah; Pusadan, Mohammad Yazdi; Yudhaswana, Yuri; Lapatta, Nouval Trezandy; Ngemba, Hajra Rasmita
Journal of Applied Informatics and Computing Vol. 9 No. 3 (2025): June 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i3.9058

Abstract

Schistosomiasis caused by the Schistosoma japonicum worm is a significant health problem in Indonesia, especially in endemic areas such as the Napu Plateau and Bada Plateau. The main problem in controlling this disease is the difficulty in rapid and accurate identification of Oncomelania hupensis lindoensis snails as intermediate hosts of the parasite. This research aims to develop an artificial intelligence-based system that can efficiently identify the snail species. The stages of this research include collecting snail image data from the Central Sulawesi Provincial Health Office, consisting of 2100 images covering seven snail species, then processed through preprocessing and augmentation stages. The model applied was EfficientNet-B0. The results showed that the EfficientNet-B0 model achieved 98.80% training accuracy and 98.33% validation accuracy. Confusion matrix testing showed good performance, with an accuracy of 98% and for the species Oncomelania hupensis lindoensis had a recall of 93%, precision of 100%, F1-score of 97%, and the resulting AUC value of 99.7%. This research successfully developed an efficient identification system, which is expected to help health surveillance personnel in accelerating the identification process of schistosomiasis intermediate hosts.
Comparison of Machine Learning Algorithms for Predicting Stunting Prevalence in Indonesia Pratama, Moh. Asry Eka; Hendra, Syaiful; Ngemba, Hajra Rasmita; Nur, Rosmala; Azhar, Ryfial; Laila, Rahmah
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 13 No. 2 (2024): JULY
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v13i2.2097

Abstract

Stunting is a serious public health problem, especially among under-fives, which can cause serious short- and long-term impacts. Efforts to tackle stunting in Indonesia involve national strategies and development priorities. Therefore, this study aims to compare the performance of machine learning regression algorithms in predicting stunting prevalence in Indonesia. The data collected is secondary data. The data collection was done carefully, taking explicit details regarding the source, scope, extent, and analysis of the dataset, and using a careful sampling methodology. The model evaluation results show that the Random Forest Regression algorithm has the best performance, with a success rate of 90.537%. The application of this model to the new dataset shows that East Nusa Tenggara province has the highest percentage of stunting at 31.85%, while Bali has the lowest percentage at 12.07%. Visualization of the dashboard using Tableau provides a clear picture of the distribution of stunting in Indonesia. In conclusion, this research contributes to the development of science, especially in the field of machine learning and public health, and provides policy recommendations for tackling stunting in Indonesia.
Bahasa Inggris Abdillah Sani, Ilham; Lapatta, Nouval Trezandy; Ngemba, Hajra Rasmita; Fahlevi, Mohammad Fazrin
The Indonesian Journal of Computer Science Vol. 13 No. 4 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i4.4307

Abstract

Implementing a digital-based hazardous work licensing management system at PT Citra Palu Minerals is intended to enhance the efficiency and transparency of the work permit process. The research methodology involves a qualitative approach, Agile methodology system development, and integration with WhatsApp for notifications. The research findings indicate that this system simplifies the submission, approval, and monitoring of work permits in a structured manner, thereby reducing the risk of work accidents. Black box testing demonstrates that the system's performance meets expectations, while the questionnaire results indicate a high level of user satisfaction with an average score of 4.3 out of 5. Implementing this system can serve as a model for enhancing occupational safety and health management in similar industries.