Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : International Journal of Robotics and Control Systems

EEG-Based Lie Detection Using Autoencoder Deep Learning with Muse II Brain Sensing Hermawan, Arya Tandy; Zaeni, Ilham Ari Elbaith; Wibawa, Aji Prasetya; Gunawan, Gunawan; Hartono, Nickolas; Kristian, Yosi
International Journal of Robotics and Control Systems Vol 4, No 3 (2024)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v4i3.1497

Abstract

Detecting deception has significant implications in fields like law enforcement and security. This research aims to develop an effective lie detection system using Electroencephalography (EEG), which measures the brain's electrical activity to capture neural patterns associated with deceptive behavior. Using the Muse II headband, we obtained EEG data across 5 channels from 34 participants aged 16-25, comprising 32 males and 2 females, with backgrounds as high school students, undergraduates, and employees. EEG data collection took place in a suitable environment, characterized by a comfortable and interference-free setting optimized for interviews. The research contribution is the creation of a lie detection dataset and the development of an autoencoder model for feature extraction and a deep neural network for classification. Data preparation involved several pre-processing steps: converting microvolts to volts, filtering with a band-pass filter (3-30Hz), STFT transformation with a 256 data window and 128 overlap, data normalization using z-score, and generating spectrograms from power density spectra below 60Hz. Feature extraction was performed using an autoencoder, followed by classification with a deep neural network. Methods included testing three autoencoder models with varying latent space sizes and two types of classifiers: three new deep neural network models, including LSTM, and six models using pre-trained ResNet50 and EfficientNetV2-S, some with attention layers. Data was split into 75% for training, 10% for validation, and 15% for testing. Results showed that the best model, using autoencoder with latent space size of 64x10x51 and classifier using the pre-trained EfficientNetV2-S, achieved 97% accuracy on the training set, 72% on the validation set, and 71% on the testing set. Testing data resulted in an F1-score of 0.73, accuracy of 0.71, precision of 0.68, and recall of 0.78. The novelty of this research includes the use of a cost-effective EEG reader with minimal electrodes, exploration of single and 3-dimensional autoencoders, and both non-pretrained classifiers (LSTM, 2D convolution, and fully connected layers) and pretrained models incorporating attention layers.
Improving Efficiency and Effectiveness of Wheeled Mobile Robot Pathfinding in Grid Space Using a Genetic Algorithm with Dynamic Crossover and Mutation Rates Lestari, Dyah; Sendari, Siti; Zaeni, Ilham Ari Elbaith; Arifin, Samsul; Sari, Rina Dewi Indah
International Journal of Robotics and Control Systems Vol 5, No 1 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i1.1573

Abstract

Incorrect parameter tuning of crossover and mutation rates in Genetic Algorithms (GA) can negatively impact their effectiveness and efficiency in mobile robot pathfinding. This study focuses on improving the performance of wheeled mobile robots in grid-based environments by introducing a Dynamic Crossover and Mutation Rates (DCMR) strategy within the GA framework. The primary contribution of this research is enhancing the efficiency and effectiveness of mobile robot pathfinding, resulting in shorter average path lengths and faster convergence times. Additionally, this method addresses the challenge of selecting appropriate GA parameters while increasing the algorithm's adaptability to different phases of the search process. The DCMR approach involves linearly increasing the crossover rate by 10% (from 0% to 100%) and decreasing the mutation rate by 10% (from 100% to 0%) over every 10 generations during the GA's evolution. Unlike fixed parameter tuning or exponential and sigmoid parameter tuning—both of which require trial and error to determine optimal values—the DCMR method provides a systematic and efficient solution without additional computational cost. Experiments were conducted across eight scenarios featuring varying distances between the start and target points, with two obstacles randomly placed in the robot's environment. The results showed that implementing the DCMR method consistently identified the optimal path, reduced average path lengths by 0.99%, and accelerated algorithm convergence by 48.39% compared to fixed parameter tuning. These findings demonstrate that the DCMR method significantly enhances the performance of GAs for mobile robot pathfinding, offering a reliable and efficient approach for navigating complex environments.
Co-Authors A.N. Afandi Adam Rachmawan Adib Nur Sasongko Aditama Yudha Atmanegara Adjie Rosyidin Afifah Salim Afnan Habibi, M. Agung Bella Putra Utama Aji Prasetya Wibawa Aji Wibawa Akhmad Afrizal Rizqi Amalia Sufa Andrew Nafalski Andrew Nafalski Andy Hermawan Anggraeni Budiarti Anik N. Handayani Anik Nur Handayani Arengga Wibowo, Danang Arifin, Samsul Aripriharta - Arya Kusuma Wardhana Arya Tandy Hermawan Atmaja, Nimas Hadi Dessy Rif’a Anzani Dian Candra Lestari Dony Setiawan Dwiyanto, Felix Andika Dyah Lestari Eko Pambagyo Setyobudi Fanani, Erianto Faozan Fauzi, Rochmad Felix Andika Dwiyanto Felix Andika Dwiyanto Ferdiansyah, Dodik Septian Ferdinand, Miftakhul Anggita Bima Fitriana Kurniawati Gunawan Gunawan Gunawan Gwinny Tirza Rarastri Hanny Prasetya Hariyadi Hari Putranto Harits Ar Rosyid Hartono, Nickolas Hendrawan, William Hartanto Hidayah Kariima Fithri Hsien-I Lin I Made Wirawan Irvan, Mhd Ismail, Amelia Ritahani Ivatus Sunaifah Kartika Kirana Kevin Raihan Khafit Zaman Kotaro Hirasawa Liliek Rahayu M. Adib Nursasongko Maftuh Ahnan Mahisha Laila Moh. Iqbal Ardiansyah Mohamad Iqbal Mokh Sholihul Hadi Muhammad Arrazy Muhammad Firmansyah muhammad hafiizh, muhammad Muhammad Iqbal Akbar Muhammad Khusairi Osman Muhammad Rifai Muhammad Syauqi Muhammad Usman Mursyit, Mohammad Nafalski, Andrew Ningtyas, Yana Nusantar, Alrizal Akbar Nusantar Akbar Piska Dwi Nurfadila Prana Ihsanuddin, Adika Puji Santoso Pundhi Yuliawati Rasidy, Ahmad Himawari Retno Indah Rokhmawati Ridwan Shalahuddin Rina Dewi Indahsari Riris Andriani Rizal Kholif Nurrohman Ronny Afrian Samsul Arifin Setumin, Samsul Shandy Darmawan Simbolon, Triyanti Siti Sendari Sugiono, Bhima Satria Rizki Sujito Sujito Suyono Suyono Syaad Patmanthara Syafaat, Mokhammad Tri Atmadji Sutikno Utama, Agung Bella Putra Yandhika Surya Akbar Gumilang Yogi Dwi Mahandi Yosi Kristian Zafifatuz Zuhriyah