p-Index From 2020 - 2025
6.059
P-Index
This Author published in this journals
All Journal ComEngApp : Computer Engineering and Applications Journal Bulletin of Electrical Engineering and Informatics Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) Inspiratif Pendidikan Jurnal Teknologi Informasi dan Ilmu Komputer Journal of Information Systems Engineering and Business Intelligence KLIK (Kumpulan jurnaL Ilmu Komputer) (e-Journal) Sistemasi: Jurnal Sistem Informasi Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control UICELL Conference Proceeding Jurnal Sains dan Informatika JURNAL ILMIAH INFORMATIKA Hearty : Jurnal Kesehatan Masyarakat Jurnal Biomedika dan Kesehatan Psikologi Konseling: Jurnal Kajian Psikologi dan Konseling Journal of Electronics, Electromedical Engineering, and Medical Informatics Jurnal Pengabdian Kepada Masyarakat (Mediteg) Health Information : Jurnal Penelitian Jurnal Teknik Informatika (JUTIF) Journal of Applied Data Sciences JOURNAL LA MEDIHEALTICO MAHESA : Malahayati Health Student Journal Fitrah: Journal of Islamic Education Multidiciplinary Output Research for Actual and International Issue (Morfai Journal) Prosiding Seminar Nasional Sisfotek (Sistem Informasi dan Teknologi Informasi) Journal of Data Science and Software Engineering Jurnal INFOTEL Jurnal Pengabdian Kepada Masyarakat Itekes Bali JUKEJ: Jurnal Kesehatan Jompa Jurnal Informatika Polinema (JIP) Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Holistik Jurnal Kesehatan
Claim Missing Document
Check
Articles

Found 5 Documents
Search
Journal : Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics

Improving Diabetes Prediction Using Feedforward Neural Network with Adam Optimization and SMOTE Technique Wijaya Kusuma, Arizha; Mazdadi, Muhammad Itqan; Kartini, Dwi; Farmadi, Andi; Indriani, Fatma; P., Chandrasekaran
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 3 (2025): August
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i3.127

Abstract

Diabetes mellitus is a chronic metabolic disorder that demands early and accurate detection to prevent life-threatening complications. Traditional diagnostic procedures, such as blood glucose tests and oral glucose tolerance tests, are often invasive, time-consuming, and resource-intensive, making them less practical for widespread screening. This study aims to explore the potential of artificial intelligence, specifically Feedforward Neural Networks (FNN), in predicting diabetes based on clinical data from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The main contribution of this research lies in the application of the Adaptive Moment Estimation (Adam) optimization algorithm and the Synthetic Minority Oversampling Technique (SMOTE) to enhance the performance and generalization of the FNN on imbalanced medical datasets. The methodology involves preprocessing steps such as imputing zero values with feature means, normalizing input features using Min-Max scaling, and applying SMOTE to balance class distribution. Two model configurations were compared: a baseline FNN trained manually using full-batch gradient descent and a second FNN optimized using Adam. Experimental results demonstrated that the baseline model achieved an accuracy of 70.13%, precision of 56.06%, recall of 68.52%, and F1-score of 61.67%, while the Adam-optimized model achieved superior results with an average accuracy of 73.31%, precision of 60.97%, recall of 66.67%, and F1-score of 63.64% across ten independent runs. These findings indicate that combining adaptive optimization with oversampling significantly enhances the robustness and reliability of neural networks for medical classification tasks. In conclusion, the proposed method provides an effective framework for AI-assisted early diabetes detection and opens pathways for future development using deeper network architectures and explainable AI models for clinical applications.
Enhancing Natural Disaster Monitoring: A Deep Learning Approach to Social Media Analysis Using Indonesian BERT Variants Fitriani, Karlina Elreine; Faisal, Mohammad Reza; Mazdadi, Muhammad Itqan; Indriani, Fatma; Nugrahadi, Dodon Turianto; Prastya, Septyan Eka
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/t158qq37

Abstract

Social media has become a primary source of real-time information that can be leveraged by artificial intelligence to identify relevant messages, thereby enhancing disaster management. The rapid dissemination of disaster-related information through social media allows authorities to respond to emergencies more effectively. However, filtering and accurately categorizing these messages remains a challenge due to the vast amount of unstructured data that must be processed efficiently. This study compares the performance of IndoRoBERTa, IndoRoBERTa MLM, IndoDistilBERT, and IndoDistilBERT MLM in classifying social media messages about natural disasters into three categories: eyewitness, non-eyewitness, and don’t know. Additionally, this study analyzes the impact of batch size on model performance to determine the optimal batch size for each type of disaster dataset. The dataset used in this study consists of 1000 messages per category related to natural disasters in the Indonesian language, ensuring sufficient data diversity. The results show that IndoDistilBERT achieved the highest accuracy of 81.22%, followed by IndoDistilBERT MLM at 80.83%, IndoRoBERTa at 79.17%, and IndoRoBERTa MLM at 78.72%. Compared to previous studies, this study demonstrates a significant improvement in classification accuracy and model efficiency, making it more reliable for real-world disaster monitoring. Pre-training with MLM enhances IndoRoBERTa’s sensitivity and IndoDistilBERT’s specificity, allowing both models to better understand context and optimize classification results. Additionally, this study identifies the optimal batch sizes for each disaster dataset: 32 for floods, 128 for earthquakes, and 256 for forest fires, contributing to improved model performance. These findings confirm that this approach significantly improves classification accuracy, supporting the development of machine learning-based early warning systems for disaster management. This study highlights the potential for further model optimization to enhance real-time disaster response and improve public safety measures more effectively and efficiently.
Implementation of Copeland Method on Wrapper-Based Feature Selection Using Random Forest For Software Defect Prediction Aryanti, Agustia Kuspita; Herteno, Rudy; Indriani, Fatma; Nugroho, Radityo Adi; Muliadi, Muliadi
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/2pgffc67

Abstract

Software Defect Prediction is crucial to ensure software quality. However, high-dimensional data presents significant challenges in predictive modelling, especially identifying the most relevant features to improve model performance. Therefore, efforts are needed to address these issues, and one is to apply feature selection methods. This study introduces a new approach by applying the Copeland ranking method, which aggregates feature weights from multi-wrapper methods, including Recursive Feature Elimination (RFE), Boruta, and Custom Grid Search, using 12 NASA MDP datasets. The study also applies Random Forest classification and evaluates the model using AUC and t-Test. In addition, this study also compares the accuracy and precision values produced by each method. The results consistently show that the Copeland ranking method produces superior results compared to other ranking methods. The average AUC value obtained from the Copeland ranking method is 0.7496, higher than the Majority ranking method with an average AUC of 0.7416 and the Optimal Rank ranking method with an average AUC of 0.7343. These findings confirm that applying the Copeland ranking method in wrapper-based feature selection can enhance classification performance in software defect prediction using Random Forest compared to other ranking methods. The strength of the Copeland method lies in its ability to integrate rankings from various feature selection approaches and identify relevant features. The findings of this research demonstrate the potential of the Copeland ranking method as a reliable tool for ranking features obtained from various wrapper-based feature selection techniques. The implementation of this approach contributes to improved software defect prediction and provides new insights for the development of ranking methods in the future
Dimensionality Reduction Using Principal Component Analysis and Feature Selection Using Genetic Algorithm with Support Vector Machine for Microarray Data Classification Kartini, Dwi; Badali, Rahmat Amin; Muliadi, Muliadi; Nugrahadi, Dodon Turianto; Indriani, Fatma; Saputro, Setyo Wahyu
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/mr7x9713

Abstract

DNA microarray is used to analyze gene expression on a large scale simultaneously and plays a critical role in cancer detection. The creation of a DNA microarray starts with RNA isolation from the sample, which is then converted into cDNA and scanned to generate gene expression data. However, the data generated through this process is highly dimensional, which can affect the performance of predictive models for cancer detection. Therefore, dimensionality reduction is required to reduce data complexity. This study aims to analyze the impact of applying Principal Component Analysis (PCA) for dimensionality reduction, Genetic Algorithm (GA) for feature selection, and their combination on microarray data classification using Support Vector Machine (SVM). The datasets used are microarray datasets, including breast cancer, ovarian cancer, and leukemia. The research methodology involves preprocessing, PCA for dimensionality reduction, GA for feature selection, data splitting, SVM classification, and evaluation. Based on the results, the application of PCA dimensionality reduction combined with GA feature selection and SVM classification achieved the best performance compared to other classifications. For the breast cancer dataset, the highest accuracy was 73.33%, recall 0.74, precision 0.75, and F1 score 0.73. For the ovarian cancer dataset, the highest accuracy was 98.68%, recall 0.98, precision 0.99, and F1 score 0.99. For the leukemia dataset, the highest accuracy was 95.45%, recall 0.94, precision 0.97, and F1 score 0.95. It can be concluded that combining PCA for dimensionality reduction with GA for feature selection in microarray classification can simplify the data and improve the accuracy of the SVM classification model. The implications of this study emphasize the effectiveness of applying PCA and GA methods in enhancing the classification performance of microarray data.
Machine Learning Implementation for Sentiment Analysis on X/Twitter: Case Study of Class Of Champions Event in Indonesia Hafizah, Rini; Saragih, Triando Hamonangan; Muliadi, Muliadi; Indriani, Fatma; Mazdadi, Muhammad Itqan
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 2 (2025): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i2.81

Abstract

Sentiment analysis on social media is becoming an important approach in understanding public opinion towards an event. Twitter, as a microblogging platform, generates a large amount of data that can be utilized for this analysis. This study aims to evaluate and compare the performance of three classification algorithms, namely Support Vector Machine (SVM), Random Forest, and Extreme Gradient Boosting (XGBoost), in sentiment analysis related to the Clash of Champions event in Indonesia. To represent the text data, two feature extraction techniques are used, namely Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of Words (BoW). In addition, Synthetic Minority Over-sampling Technique (SMOTE) is applied to handle data imbalance, while model optimization is performed using GridSearchCV. The research dataset consists of 1,000 tweets collected through web scraping, then manually processed and labeled before model training and testing. The results showed that the TF-IDF technique provided superior results compared to BoW. The Random Forest model with TF-IDF achieved the highest accuracy of 91%, while XGBoost with TF-IDF had the highest Area Under the Curve (AUC) of 0.91. The findings confirm that the selection of appropriate feature extraction techniques and algorithms can improve accuracy in sentiment analysis. This study can be applied in public opinion monitoring and data-driven decision-making. Future research can explore word embedding techniques and transformer-based deep learning models to improve semantic understanding and accuracy of sentiment analysis.
Co-Authors Abdilah, Muhammad Fariz Fata Abdul Azis Abdullayev, Vugar Achmad Rizal Afifa, Ridha Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Ahmad Rusadi Arrahimi - Universitas Lambung Mangkurat) Al Habesyah, Noor Zalekha Amini, Aisah Ananda, Zahra Andi Farmadi Andi Farmadi Anshari, Muhammad Ridha Ansyari, Muhammad Ridho Arianti, Tiara Aryanti, Agustia Kuspita Astuti, Yeni Ayu Astuty, Delfriana Ayu Athavale, Vijay Annant Azizah, Azkiya Nur Badali, Rahmat Amin Baron Hidayat Barus, Nency Utami Br Berutu, Marwiyah Br Barus, Nency Utami br Damanik, Cici Rahayu Carolina, Ayu Dendy Fadhel Adhipratama Dendy Difa Fitria Dodon Turianto Nugrahadi Dwi Kartini Dwi Kartini, Dwi Fahmi Setiawan Fairudz Shahura Faisal, M. Reza Faisal, Mohammad Reza Fajrin Azwary Fitriani, Karlina Elreine Friska Abadi Ghinaya, Helma Gustara, Rizki Asih Hafizah, Rini Harahap, Helma Denisah Hartati Hartati Hasyimi , Ali Hayati, Sera Br Hermiati, Arya Syifa Herteno, Rudi Herteno, Rudy Heru Kartika Chandra I Gusti Ngurah Antaryama Ichwan Dwi Nugraha Ihsan, Muhammad Khairi Irwan Budiman Irwan Budiman Khairiyah Dwie Vanesa Lilies Handayani Lubis, Masruroh M. Apriannur M. Khairul Rezki Mahmud Mahmud Mawandri, Dwi Mohammad Mahfuzh Shiddiq Muhammad Alkaff Muhammad Itqan Mazdadi Muhammad Nadim Mubaarok Muhammad Reza Faisal, Muhammad Reza Muhammad Ridha Maulidi Muliadi Muliadi Muliadi Aziz Nafiz, Muhammad Fauzan Nita Arianty Nofi Susanti Nurhayani nurhayani Nurhayati Octavia, Mayang Dwi Oni Soesanto P., Chandrasekaran Patrick Ringkuangan Prastya, Septyan Eka Purnajaya, Akhmad Rezki Radityo Adi Nugroho Rapotan Hasibuan Reni Agustina Harahap Riadi, Agus Teguh Risma, Ade Ritonga, Egril Rehulina Rozaq, Hasri Akbar Awal Rudy Herteno Saputro, Setyo Wahyu Saragih, Triando Hamonangan Sa’diah, Halimatus Selvia Indah Liany Abdie Soesanto, Oni Sri Rahayu Suci Wulandari Triyoolanda, Anggun Utami, Tri Niswati Wahyu Caesarendra Wardana, Muhammad Difha Wati, Desi Indriani Rahma Wijaya Kusuma, Arizha YILDIZ, Oktay Yulia Khairina Ashar Yunida, Rahmi Zahra, Fairuz Zali, Muhammad Zata Ismah Zida Ziyan Azkiya