Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Soft Computing Exploration

Breast tumor classification using adam and optuna model optimization based on CNN architecture Sari, Christy Atika; Rachmawanto, Eko Hari; Daniati, Erna; Setiawan, Fachruddin Ari; Hyperastuty, Agoes Santika; Mintorini, Ery
Journal of Soft Computing Exploration Vol. 5 No. 2 (2024): June 2024
Publisher : SHM Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52465/joscex.v5i2.373

Abstract

Breast cancer presents a significant challenge due to its complexity and the urgency of the intervention required to prevent metastasis and potential fatality. This article highlights the innovative application of Convolutional Neural Networks (CNN) in breast tumor classification, marking substantial progress in the field. The key to this advancement is the collaboration among medical professionals, scientists, and artificial intelligence experts, which maximizes the potential of technology. The research involved three phases of training with varying proportions of training data. The first training phase achieved the highest accuracy rate of 99.72%, with an average accuracy of 99.05% in all three phases. Metrics such as precision, recall, and F1 score were also highly satisfactory, underscoring the model's efficacy in accurately classifying breast tumors. Future research aims to develop more complex and precise predictive models by incorporating larger and more representative datasets. This progression promises to improve understanding, prevention, and management of breast cancer, offering hope for significant advances in 2024 and beyond.