Claim Missing Document
Check
Articles

Found 28 Documents
Search

PENENTUAN SUATU PENGONTROL DENGAN INDEKS PERFORMANSI BERUPA NORMA CAMPURAN DAN Soelistyo, Robertus Heri
MATEMATIKA Vol 10, No 3 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (80.871 KB)

Abstract

. This paper considers the mix-norm / standard problem. Specifically an LQG control design problem involving a constraint on  disturbance attenuation is addressed. It is shown that the / dynamic compensator gains are completely characterized via coupled Riccati/Lyapunov equation. The principle result involves sufficient condition for characterizing full order guaranteeing closed loop stability, constrained  disturbance attenuation and an optimized  performance bound.
ANALISIS KEKONTINUAN, KETERDIFERENSIALAN DAN KETERINTEGRALAN FUNGSI BLANCMANGE Soelistyo, Robertus Heri; Sumanto, YD
MATEMATIKA Vol 14, No 2 (2011): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (23.184 KB)

Abstract

. This article presents differentiable characteristics of the Blancmange function on ℝ. The function has singularities of each point on ℝ. The first, it will be proven  that function is continuous at each point on ℝ, and then by constructing of an infinite series of the saw tooth function, will be proven that the Blancmange function is differentiable nowhere at each point on ℝ. At the end of this article, also discussed integrable analysis of Blancmange function.  
SOLUSI MASALAH TRANSPORTASI MENGGUNAKAN TOCM-SUM APPROACH DENGAN INDIKATOR DISTRIBUSI Astuti, Nita Dwi; Utomo, Robertus Heri Soelistyo; Djuwandi, Djuwandi
MATEMATIKA Vol 19, No 3 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (237.731 KB)

Abstract

Transportation problems are related to the transport of a product from some sources to a number of different destination. In general, the different delivery will produce different shipping cost, therefore the purpose of solving classic transportation problems with the allocation of delivery from the source to destination is to determine the minimum transportation costs. The appropriate allocating in each case will produce an optimal solution for both minimize case and maximize case. TOCM-SUM approach with the indicator distribution is a new method for seeking initial feasible solution of the transportation problem. This method was proposed by Aminur Rahman Khan, Adrian Vilcu, MD.Sharif Uddin and FlorinaUngureanu. The first step is create a table of transportation, the second step is reduce the elements in each row and column with the smallest elements in every row and column, the third case is form the tables of Total Opportunity Cost Matrix (TOCM), the fourth case is calculate the indicators of distribution of each row and column in the TOCM table, and thereafter, the allocation is given to the cell that has the minimum distribution indicator. Repeat the steps until the total allocation of supply and demand is met, for optimal solutions the method of Stepping Stone is being used. This article discusses the application of TOCM-SUM Approach with the indicator distribution – Stepping Stone in the CV. Tirta Makmur Ungaran.    
KEBERADAAN SOLUSI PERSAMAAN DIOPHANTIN MATRIKS POLINOMIAL DAN PENYELESAIANNYA MENGGUNAKAN TITIK-TITIK INTERPOLASI Istiani, Laila; Utomo, Robertus Heri
MATEMATIKA Vol 11, No 2 (2008): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (86.877 KB)

Abstract

Diophantine equation is a matrix polynomial equation of the form . Here, we investigate the existence of the solutions . It can be investigated by using the grestest common right divisors of the matrix . Then, the solutions can be solved by transforming to the form of the polynomial matrix equation . By taking the interpolation points will be obtained the solutions  of degree r.  
ANALISIS KESTABILAN MODEL DINAMIK ALIRAN FLUIDA DUA FASE PADA SUMUR PANAS BUMI Utomo, Robertus Heri Soelistyo; ., Widowati; Tjahjana, Redemtus Heru; Niswah, L
MATEMATIKA Vol 17, No 1 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (11071.07 KB)

Abstract

In this paper is discussed about the analysis of the stability of fluid flow dynamical model of two phases on the geothermal wells. The form of the model is non-linear differential equation. To analyze the local stability around the equilibrium point, first, the non linear models of is linearized around the equilibrium point using Taylor series. Further, from linearized model, we find a Jacobian matrix, where all of the real eigen values of the Jacobian matrix are zeros. So that the behviour of the dynamical system obtained around the equilibrium point is stable.  
METODE PENENTUAN BENTUK PERSAMAAN RUANG KEADAAN WAKTU DISKRIT Heri, Robertus
MATEMATIKA Vol 6, No 2 (2003): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (74.215 KB)

Abstract

Tulisan ini membahas penentuan persamaan ruang keadaan dari sistem waktu diskrit dalam bentuk: kanonik terkontrol, kanonik terobservasi, kanonik diagonal, serta kanonik Jordan dengan menggunakan metoda pemrograman langsung, pemrograman bersarang dan perluasan pecahan sebagian. Juga dibahas ketidaktunggalan persamaan ruang keadaan dari suatu sistem yang diberikan, yang dibuktikan dengan relasi antara dua vektor keadaan yang berdimensi sama, dimana satu sama lain dihubungkan oleh sebarang matriks non singular.
MODEL PERTUMBUHAN LOGISTIK DENGAN KONTROL OPTIMAL PENYEBARAN DEMAM BERDARAH DENGUE ., Kartono; ., Widowati; Utomo, Robertus Heri Soelistyo; Tjahjana, Redemtus Heru
MATEMATIKA Vol 18, No 1 (2015): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (47.035 KB)

Abstract

Controlling of spread of dengue fever was sought by the government together with the people by, among others, campaigning “3M controlling” and eradicating of the vector population using insecticide and threating the infected people. The aim of this research is constructing the optimal control dynamic model by applying several strategies to control the spread of dengue fever. In this paper, the optimal control is constructed by using host logistic growth population model approach and then it is solved by using maximum Pontryagin principle. The results show that in the equilibrium condition, the effect of the control variable u1 (“3M campaigning” and eradicating of the mosquito by using insecticide) is strongly affected by the rate of the direct contact between host population and the infected and susceptible vector whereas the control variable u2 is strongly affected by the number of the infected host population
Penentuan Kestabilan Sistem Kontrol Lup Tertutup Waktu Kontinu dengan Metode Transformasi ke Bentuk Kanonik Terkontrol Heri, Robertus
MATEMATIKA Vol 7, No 1 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (65.37 KB)

Abstract

Kestabilan suatu sistem kontrol lup tertutup, baik waktu kontinu maupun waktu diskrit ditentukan oleh letak pole (pembuat nol untuk suku banyak penyebut) di bidang s atau z. Suatu sistem control lup tertutup waktu kontinu dikatakan stabil jika polenya terletak di sebelah kiri sumbu imajiner (bagian real dari nilai eigen bertanda negatif). Meskipun suatu sistem sudah stabil, belum tentu pole-pole dari system tersebut sesuai yang diinginkan, sebab hal ini menentukan tingkat kecepatan terjadinya kestabilan system tersebut. Penempatan pole sesuai yang diinginkan, dimungkinkan jika dan hanya jika sistem dalam keadaan terkontrol lengkap. Tulisan ini membahas suatu teknik penempatan pole dari sistem waktu kontinu dengan mengubah suatu sistem menjadi bentuk kanonik terkontrol
PELABELAN TOTAL TRIMAGIC SISI TERURUT TITIK-a PADA BEBERAPA GRAF Aprilia, Maita; Soelistyo Utomo, Robertus Heri; Farikhin, Farikhin
MATEMATIKA Vol 20, No 2 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.1 KB)

Abstract

Given graph G with number of vertex p and number of edge q. In this paper, we discussed a-vertex consecutive edge trimagic total labeling for several graphs which contain Bistar and Cycle Graph.
PELABELAN TOTAL TITIK AJAIB PADA COMPLETE GRAPH n K DENGAN N GENAP Novi Irawati; Robertus Heri
Semantik Vol 1, No 1 (2011): Prosiding Semantik 2011
Publisher : Semantik

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (359.761 KB)

Abstract

Let G be a graph with vertex set and edge set and let and  .A vertex-magic total labeling of a graph  is a bijection map  from to the integerssuch that there exists a positive integer satisfying , for every. Then k is called a magic constant and G is called vertex-magic total graph. In [5] have discussedvertex-magic labeling of complete graph for odd, now in this article, we consider a vertex-magiclabeling of complete graph for even with use an algorithm which is composed of a modifiedconstruction magic square algorithm.Keywords : vertex-magic total labeling, Complete graph , magic square