p-Index From 2021 - 2026
4.922
P-Index
Claim Missing Document
Check
Articles

KORELASI GEJALA PENYAKIT FLU PADA ANAK BALITA DENGAN MENGGUNAKAN ALGORITMA SEMUT Noni Selvia; Erlin Windia Ambarsari; Nurfidah Dwitiyanti
Jurnal Informatika Dan Tekonologi Komputer (JITEK) Vol. 2 No. 2 (2022): Juli : Jurnal Informatika dan Teknologi Komputer
Publisher : Pusat Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jitek.v2i2.246

Abstract

Influenza is one of the most common illnesses suffered by toddlers. Knowing the symptoms that appear most quickly, parents can provide appropriate first aid to their toddlers. A graph is a field of mathematics used to find the fastest pathways in a path based on the starting point to the endpoint. The graph used is a weighted graph with weights taken from the moderate pain suffered by toddlers, in which the range of a pain scale is 0 – 10. Then, using the ant algorithm to determine the distance from symptoms that often appear. The results obtained from pheromone evaporation of the ant algorithm are Fever (P1), Headache (P2), Weakness (P7), Vomiting (P8), and Diarrhea (P9). The pheromones taken as pathways were high pheromone values P1–P2 (0.0905), P2–P7 (0.0874), P7–P8 (0.0811), and P8–P9 (0.0810). Ant algorithm can identify flu symptoms in children under five and explain the relationship between the symptoms.
Hybrid Chaos-Isolation Forest Framework for Anomaly Detection in Indonesia’s Public Procurement Ambarsari, Erlin Windia; Desyanti, Desyanti; Fathudin, Dedin
Bulletin of Informatics and Data Science Vol 4, No 2 (2025): November 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i2.137

Abstract

This study proposes and empirically evaluates a Hybrid Chaos-Isolation Forest (HC-iForest) framework for detecting anomalies in Indonesia’s public procurement datasets. The purpose of this research is to address the difficulty of identifying irregular procurement patterns, as existing assessment mechanisms remain largely descriptive and retrospective. The framework integrates chaos-based temporal descriptors—permutation entropy, turning points, and volatility—with statistical indicators to enhance sensitivity to nonlinear and irregular time series. Using monthly procurement data from the Open Contracting Data Standard (OCDS) covering the period from 2019 to 2024, the model identified anomalous fiscal patterns associated with year-end budget adjustments and procurement surges. Empirical evaluation using correlation, ablation, and statistical validation shows that the hybrid model introduces non-redundant anomaly information, achieving a Spearman rank correlation of approximately 0.75 compared to the baseline Isolation Forest, with reduced overlap at intermediate thresholds (Jaccard similarity of 0.20 at the Top 5%). These results confirm that chaos-driven features improve model stability and interpretability. The findings reveal that anomalies are systemic manifestations of institutional and fiscal behavior rather than random deviations. The HC-iForest framework offers a data-driven early-warning mechanism for oversight agencies such as LKPP and ICW, strengthening transparency and accountability in public spending. Future studies may extend this framework through neural or spatiotemporal hybrid architectures to support intelligent and adaptive fiscal monitoring systems
Comparison of Case-Based Reasoning and Hybrid Case-Based Methods in Expert System for Diagnosing Rice Plant Diseases Roznim, Roznim; Mesran, M.Kom, Mesran; Setiawansyah, Setiawansyah; Ambarsari, Erlin Windia
Bulletin of Informatics and Data Science Vol 4, No 2 (2025): November 2025
Publisher : PDSI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61944/bids.v4i2.132

Abstract

Rice plants are susceptible to various types of diseases that can reduce productivity and quality of the harvest. Therefore, an expert system is needed that can help the disease diagnosis process quickly and accurately. This study compares two approaches in expert systems, namely the Case-Based Reasoning (CBR) method and the Hybrid Case-Based method, to diagnose rice plant diseases based on the symptoms experienced. Data on symptoms and types of diseases were analyzed using both methods to see the level of suitability of the resulting diagnosis. The test results showed that the Hybrid Case-Based method produced a higher level of certainty for all types of diseases compared to the CBR method. For example, Bacterial Leaf Blight disease has a certainty value of 99.5% in the Hybrid method, higher than 83.8% in the CBR method. These findings indicate that the Hybrid method is more effective and accurate in the process of diagnosing rice plant diseases. Thus, an expert system based on the Hybrid Case-Based method is recommended to support decision making in the agricultural sector, especially in early detection of rice diseases
Virtual Learning Berbasis Karakter Virtual Pada SDN Jatimekar I Bekasi Julaeha, Siti; Kustian, Nunu; Ambarsari, Erlin Windia
Kapas: Kumpulan Artikel Pengabdian Masyarakat Vol 4, No 2 (2025)
Publisher : Universitas Indraprasta PGRI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30998/ks.v4i2.4441

Abstract

Pembelajaran daring terus berkembang dengan inovasi teknologi, salah satunya melalui penggunaan karakter virtual sebagai media interaktif. Pelatihan ini mengarah pada penerapan virtual learning berbasis karakter virtual di SDN Jatimekar I Bekasi dengan memanfaatkan aplikasi Vroid Studio, 3Tene, dan OBS Studio sebagai alat bantu mengajar bagi guru. Metode yang digunakan meliputi tahap kegiatan, persiapan, dan pelaksanaan. Guru diberikan pelatihan untuk membuat dan mengoperasikan karakter visual yang bergerak secara real-time melalui webcam dan mikrofon, sehingga dapat menampilkan ekspresi wajah dan sinkronisasi suara guna meningkatkan keterlibatan siswa. Hasil implementasi pengabdian masyarakat menggambarkan bahwa penggunaan karakter virtual meningkatkan minat dan partisipasi siswa serta membantu guru menyampaikan materi secara lebih menarik dan responsif. Virtual learning berbasis karakter virtual berpotensi meningkatkan efektivitas pembelajaran daring dan dapat menjadi solusi inovatif dalam Pendidikan Dasar dengan dukungan teknologi dan pelatihan yang memadai.