Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Science and Technology Indonesia

A Small Amount of Sn Addition Effect to Cu-15Zn Alloy on Structure, Microstructure, Hardness, Corrosion Resistance, and Antibacterial Activity Basori, Imam; Sari, Yunita; Prasetya, Dendy Wardhana; Susetyo, Ferry Budhi; Alias, Juliawati; Budi, Setia; Yudanto, Sigit Dwi; Hasbi, Muhammad Yunan; Situmorang, Evi Ulina Margareta; Edbert, Daniel
Science and Technology Indonesia Vol. 10 No. 2 (2025): April
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.2.443-451

Abstract

Cu-15Zn alloy is widely used as a heat exchanger pipe. CuZn alloy was also used for cardiovascular implant applications. Several problems have been found in that alloy, such as less corrosion resistance. Therefore, various Sn (0.2, 0.7, 1, and 2 wt.%) were added to Cu-15Zn alloy in the present research to enhance corrosion resistance. Afterwards, the alloy was homogenized at 800 °C for 2 hours. Several investigations were conducted, such as structure, microstructure, hardness, corrosion resistance, and bacterial activity, using XRD, Optical microscope, Vickers hardness, Potentiostat equipment, and Digital camera. More Sn content leads to an increase in volume and a decrease in hardness. Presenting Sn in the alloy does not influence the phase in the alloy microstructure. The highest Sn content in the alloy promoted a more positive value of the alloy, indicating that the sample is more cathodic, probably due to the protective layer on the surface. A concentration of 1 wt.% Sn exhibits the most effective antibacterial effect probably due to the small crystallite size.
Cu Film Characteristics Synthesized Using Electrodeposition Technique at Various Currents and Under a Rotating Neodymium Magnet Susetyo, Ferry Budhi; Basori; Mansor, Muhd Ridzuan; Ruliyanta; Yudanto, Sigit Dwi; Rosyidan, Cahaya; Situmorang, Evi Ulina Margareta; Edbert, Daniel; Mutiara, Etty; Yulianto, Tri; Agus Jamaludin; Nanto, Dwi
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1156-1168

Abstract

In the present study, Cu films were made over Al alloy using the electrodeposition technique. Electrodeposition conducted at various currents (80, 100, and 120 mA), with and without influence by a rotating magnetic field (100 rpm of rotation). 0.5 M CuSO4 + 20 mL of H2SO4 was used for electrolyte solutions. The sample before and after electrodeposition was weighed using digital scale to calculate deposition rate and current efficiency. All formed Cu films were characterized using X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Scanning electron microscopy equipped with Energy dispersive spectroscopy (SEM-EDS), and Potentiostat apparatus. Furthermore, antibacterial activity using Staphylococcus aureus was also investigated. Increasing the current of electrodeposition leads to an increase in deposition rate and current efficiency for both conditions (with and without rotating magnetic field influence). Based on the XRD and ATR-FTIR investigation, Cu was successfully deposited onto Al surface. Currents used for the electrodeposition process between 80-100 mA would result in a faceted structure, while using 120 mA results near to spheroidal. Shifting to higher currents leads to decreases in grain sizes and presenting a rotating magnetic field also enhances the grain size. Current and rotating magnetic influences are not linearly influencing corrosion potential, corrosion rate and antibacterial activity. The sample made using higher current plus influencing with a rotating magnetic field has less corrosion rate and higher area of inhibition at around 0.808 mmpy and 4.01 cm2.