Claim Missing Document
Check
Articles

Found 38 Documents
Search

Penentuan Hasil Ujian Karateka Inkanas Menggunakan Metode WSM Berbasis WEB Prayuda, Muhammad Hozi; Arlis, Syafri; Andrianof, Harkamsyah
Journal Of Informatics And Busisnes Vol. 3 No. 3 (2025): Oktober - Desember
Publisher : CV. ITTC INDONESIA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47233/jibs.v3i3.3230

Abstract

The INKANAS Karate School of West Sumatra routinely conducts promotion tests for its karateka. However, the assessment process is still carried out manually, which risks subjectivity and inefficiency. This research aims to design a Decision Support System (DSS) based on the Weighted Sum Model (WSM) method to determine promotion eligibility more objectively and systematically. The system uses three criteria: Kihon, Kata, and Kumite, and was developed using PHP and MySQL. This DSS is expected to support a more transparent and efficient decision-making process.
MULTIPLE LINEAR REGRESSI PADA FUZZY NEURAL NETWORK (FNN) PENENTUAN KUALITAS DAGING SAPI Yanto, Musli; Arlis, Syafri; Putra, Deri Marse
JST (Jurnal Sains dan Teknologi) Vol. 11 No. 1 (2022)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (520.682 KB) | DOI: 10.23887/jstundiksha.v11i1.38267

Abstract

Tujuan penelitian ini membahas proses identifikasi kualitas daging sapi dengan implementasi metode multiple linear regressi (MLR) pada fuzzy neural network (FNN). Metode ini dikembangkan untuk menyempurnakan proses identifikasi yang sudah ada sebelumnya. MLR mampu melakukan proses pengukuran korelasi variable (X) dengan hasil keluaran (Y). Pendekatan dalam proses analisis tersebut menggunakan pendekatan kuantitatif untuk melakukan pengukuran dari beberapa aspek indikator yang digunakan dalam penentuan kualitas daging sapi.  Berdasarkan hasil uji korelasi dengan MLR membuktikan bahwa variabel kandungan zat kimia (X1), bau (X2), warna (X3), dan tekstur daging (X4) menghasilkan hubungan yang signifikan terhadap kualitas daging sapi (Y) dengan nilai sebesar 96.5%. Hasil analisis MLR mampu memberikan gambaran indikator variable yang tepat dalam proses analisis. Keluaran FNN juga menyajikan hasil yang cukup akurat dengan nilai sebesar 99.88%. Dengan hasil keluaran yang didapat, maka secara keseluruhan dapat disimpulkan bahwa model analisis MLR dan FNN memberikan hasil analisis dengan tingkat akurasi yang lebih baik dan efektif. Hasil tersebut mampu memberikan implikasi berupa sebuah rekomendasi dalam bentuk pengetahuan dan informasi yang didapat kepada masyarakat guna menentukan daging sapi yang baik dikonsumsi.
Improved Image Segmentation using Adaptive Threshold Morphology on CT-Scan Images for Brain Tumor Detection Arlis, Syafri; Putra, Muhammad Reza; Yanto, Musli
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol. 23 No. 3 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/matrik.v23i3.3619

Abstract

Diagnosing disease by playing the role of image processing is one form of current medical technology development. The results of image processing performance have been able to provide accurate diagnoses to be used as material for decision-making. This research aims to carry out the process of detecting brain tumor objects in Computed Tomography (CT-Scan) images by developing a segmentation technique using the Adaptive Threshold Morphology (ATM) algorithm. The performance of the ATM algorithm in the segmentation process involves the Extended Adaptive Global Treshold (eAGT) function to produce an optimal threshold value. This research method involves several stages of the process in detecting tumor objects. The preprocessing stage is carried out using the cropping and filtering process which is optimized using the eAGT function. The next stage is the morphological segmentation process involving erosion and dilation operations. The final stage of the segmentation process using the ATM algorithm is labeling objects that have been detected. The research dataset used 187 Computed Tomography-Scan images from 10 brain tumor patients. The results of this study show that the accuracy rate for detecting brain tumor objects in Computed Tomography-Scan images is 93.47%. These results can provide an automatic and effective detection process based on the optimal threshold value that has been generated. Overall, this research contributes to the development of segmentation algorithms in image processing and can be used as an alternative solution in the treatment of brain tumor patients.
Peningkatan Kualitas Citra CT-Scan dengan Penggabungan Metode Filter Gaussian dan Filter Median Sumijan, Sumijan Sumijan; Purnama, Ayu Widya; Arlis, Syafri
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 6 No 6: Desember 2019
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (4469.216 KB) | DOI: 10.25126/jtiik.201966870

Abstract

Perkembangan alat teknologi akuisisi citra medis, satu diantaranya adalah teknologi yang lazim disebut CT-scan. CT-Scan (Computed Tomography Scan) adalah prosedur untuk mendapatkan gambaran dari berbagai area kecil dari tulang termasuk tengkorak kepala dan otak. Citra hasil akuisisi atau rekaman CT-Scan dapat mebantu memperjelas adanya dugaan yang kuat tentang kelainan yang terjadi pada otak. Kualitas citra dapat dilakukan dengan proses mengubah citra menjadi citra baru sesuai kebutuhan, salah satu cara seperti fungsi transformasi, operasi matematis dan pemfilteran. Peningkatan kualitas citra CT-Scan diperlukan untuk objek keputusan medis yang mempunyai kualitas tidak baik, misalnya citra mengalami derau (noise), citra terlalu terang atau gelap, citra kurang tajam, dan kabur. Proses Peningkatan kualitas citra dapat dilakukan dengan menerapkan salah satu metode pemfilteran, untuk memperbaiki kualitas citra agar dihasilkan citra yang lebih baik dari citra aslinya. Metode gaussian filter untuk mengurangi noise speckle dan poisson pada citra otak pada CT-Scan. Pada citra noise gaussian, standar deviasi yang terbaik dalam mengurangi noise bernilai satu. Namun untuk citra noise speckle dan poisson nilai standar tidak dapat mengurangi noise tersebut. Hal ini dikarenakan standar deviasi adalah parameter dalam proses gaussian filter hanya dapat untuk noise Gaussian normal, untuk mengurangi noise sebaran tidak normal (non-linier) digunakan median filter. Kelemahan gaussian filter pada noise nilai parameter tidak stabil (non-linier) dapat diatasi pada filter median. Dari hasil penggabungan filter gaussian dan filter median filter dapat meningkatkan kualitas citra dan menguranggi noise lebih baik sebaran normal dan tidak normal. AbstractThe development of medical image acquisition technology tools, one of which is the technology commonly called CT scan. CT-Scan (Computed Tomography Scan) is a procedure to get a picture of various small areas of bone including the skull and brain. Image acquisition results or CT-Scan recordings can help clarify the existence of strong suspicions about abnormalities that occur in the brain. Image quality can be done by the process of changing the image into a new image as needed, one way such as the transformation function, mathematical operations and filtering. Increasing the quality of CT-Scan images is needed for medical decision objects that have poor quality, for example images experience noise (noise), images are too bright or dark, images are less sharp, and blurred. The process of improving image quality can be done by applying one of the filtering methods, to improve image quality to produce a better image than the original image. Gaussian filter method to reduce speckle and poison noise in brain images on CT scan. In the Gaussian noise image, the best standard deviation in reducing noise is one. However, for speckle noise images and standard poison values it cannot reduce the noise. This is because the standard deviation is a parameter in the Gaussian filter process that can only be used for normal Gaussian noise, to reduce the abnormal noise distribution (non-linear) the median filter is used. The weakness of the Gaussian filter on the noise value of an unstable (non-linear) parameter can be overcome in the median filter. From the results of combining the Gaussian filter and median filter, it can improve image quality and reduce noise better than normal and abnormal distribution.
Analisis Algoritma K-Means Clustering Dalam Pengelompokan Prestasi Belajar Siswa Menengah Atas (SMA) Dila, Rahmah; Defit, Sarjon; Arlis, Syafri
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.751

Abstract

The increased use of social media among high school students has a positive and negative impact on academic achievement. This can be seen from changes in learning patterns, concentration levels, and students' motivation in participating in learning activities. This study aims to classify student learning achievement based on the level of social media use using the K-Means Clustering algorithm. K-Means Clustering is one of the main methods in data mining.  which is a technique of grouping data based on the similarity of its characteristics. The parameters used in analyzing this study are Social Media Duration (X1), Active Time (X2), Main Platform (X3), Main Goal (X4), Social Media Access Time While Learning (X5), Social Media Addiction (X6), Social Media Addiction Level (X7), Number of Study Groups (X8) and Academic Average (X9). Based on the K-Means Clustering method, it has been proven to be able to group students based on the level of social media use. These results can be seen from the cluster category C0 (High) with 46 students, C1 (medium) with 80 students, and C2 (Low) with 72 students. The contribution of this research benefits students by helping them understand the relationship between social media usage habits and learning achievement, so as to encourage more effective time management.
Analisis Cluster Algoritma K-Means Untuk Pengelompokan Kondisi Gizi Balita Pada Posyandu Roza, Yesi Betriana; Defit, Sarjon; Arlis, Syafri
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.752

Abstract

Toddler health is a crucial indicator of community and national development. Integrated Service Posts (Posyandu) play a key role in monitoring the nutritional status of toddlers through routine weight and height checks. This study aims to analyze toddler nutritional status using the K-Means Clustering algorithm, a non-hierarchical method that groups data based on centroid proximity. The data came from 98 toddlers at the Posyandu in Manggung Village, North Pariaman District, Pariaman City, including weight, height, weight-for-age, height-for-age, weight-for-height, and weight gain. The K-Means results showed a distribution of three clusters: C0 (undernourished) with 37 toddlers, C1 (severely malnourished) with 17 toddlers, and C2 (well-nourished) with 44 toddlers. The majority of toddlers were categorized as well-nourished. This research contributes to the rapid identification of toddler nutritional problems, enabling Posyandu staff to take appropriate preventive and corrective measures.
Identifikasi Varietas Kopi Berdasarkan Analisis Warna dan Tekstur Menggunakan Metode Convolutional Neural Network Utama Putra, Kharisma; Ramadhanu, Agung; Arlis, Syafri
Bulletin of Computer Science Research Vol. 5 No. 5 (2025): August 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i5.759

Abstract

Coffee is a plantation commodity with high economic value in Indonesia, with various varieties such as Arabica, Robusta, and Liberica. Differences in coffee varieties can generally be identified through the physical characteristics of the beans, especially color and texture. Based on this, this study aims to develop a digital image-based coffee variety identification system using the Convolutional Neural Network (CNN) method with color and texture analysis as the main features. The research stages include coffee bean image acquisition, pre-processing including color segmentation and image conversion to grayscale, and color and texture feature extraction. This research dataset comes from images of unroasted coffee beans, commonly called green beans, taken using a high-resolution smartphone camera and also using secondary data taken from the Kaggle site. Both types of datasets have the same characteristics and resolution to maintain data consistency. The image dataset is divided into training data and test data, then used to train and test the Convolutional Neural Network (CNN) model. Based on this study, the Convolutional Neural Network (CNN) method can identify coffee varieties based on color and texture analysis. By using 210 training data and 90 test data of coffee bean images, the CNN method can produce an accuracy rate of 94,44%. This research contribution has the potential to be a supporting solution in the process of identifying coffee varieties quickly, accurately, and consistently, so that it can help the coffee industry in the sorting and quality control process.
Penerapan Acunetix Vulnerability Scanner dari Serangan Siber pada Keamanan Website Kampus Rusydi, Rezki; Yuhandri; Arlis, Syafri
Jurnal KomtekInfo Vol. 11 No. 3 (2024): Komtekinfo
Publisher : Universitas Putra Indonesia YPTK Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35134/komtekinfo.v11i3.569

Abstract

Keamanan website telah menjadi salah satu aspek yang paling penting dalam menjaga integritas, kerahasiaan, dan ketersediaan informasi serta data dari ancaman serangan siber. Sebagai institusi akademis yang mengelola berbagai data penting, Institusi menghadapi tantangan signifikan dalam memastikan bahwa website mereka terlindungi dari berbagai ancaman keamanan yang semakin kompleks dan canggih. Keamanan website tidak hanya penting untuk menjaga data institusi, tetapi juga untuk melindungi privasi dan informasi pribadi pengguna yang berinteraksi dengan platform tersebut. Penelitian ini berfokus pada analisis dan peningkatan sistem keamanan website Fakultas Teknik UM Sumatera Barat dengan menggunakan Acunetix Vulnerability Scanner. Alat ini adalah salah satu solusi otomatis yang dirancang untuk mengidentifikasi kerentanan keamanan pada aplikasi web. Acunetix memungkinkan pendeteksian kerentanan secara cepat dan menyeluruh, sehingga memberikan gambaran yang jelas mengenai potensi risiko yang mungkin dihadapi oleh website tersebut. Metode penelitian yang diterapkan dalam studi ini melibatkan pengujian penetrasi menggunakan Acunetix untuk mendeteksi berbagai celah keamanan yang ada pada website. Pengujian ini mencakup identifikasi terhadap celah yang mungkin dieksploitasi oleh pihak tidak bertanggung jawab, termasuk serangan cross-site scripting (XSS), SQL injection, dan kerentanan terhadap serangan Distributed Denial of Service (DDoS). Hasil analisis menunjukkan bahwa terdapat beberapa kerentanan kritis yang harus segera diatasi untuk mencegah potensi eksploitasi. Berdasarkan temuan ini, peneliti menyusun rekomendasi perbaikan dan mitigasi yang bertujuan untuk mengurangi risiko serangan siber terhadap website. Berdasarkan hasil scanning literasi pertama, website Fakultas Teknik UM Sumatera Barat dikategorikan pada tingkat ancaman 3 yang termasuk tinggi, dengan terdapat 245 peringatan atau kerentanan yang teridentifikasi, di antaranya, 8 dianggap berada pada tingkat high, 2 berada pada tingkat medium, 13 berada ditingkat Low dan selebihnya Informational Berdasarkan evaluasi yang telah dilakukan, tingkat keamanan yang tercapai berada pada level 0. Pada level ini, tidak terdapat kerentanan yang teridentifikasi (nol kerentanan) dan dukungan keamanan juga mencapai tingkat optimal (nol dukungan). Oleh karena itu, dapat disimpulkan bahwa situs web Fakultas Teknik UM Sumatera Barat saat ini, dengan status level 0, tidak memiliki kerentanan keamanan. Hasil penelitian bisa menjadi acuan bagi pengelola website di lingkungan akademis, dalam melindungi website dari ancaman siber.