Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Jurnal Sistem dan Informatika

Penerapan K-Means Clustering pada Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Kabupaten Karawang Isy Karima Fauzia; Budi Arif Dermawan; Tesa Nur Padilah
Jurnal Sistem dan Informatika (JSI) Vol 15 No 1 (2020): Jurnal Sistem dan Informatika (JSI)
Publisher : Bagian Perpustakaan dan Publikasi Ilmiah - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v15i1.350

Abstract

Infeksi Saluran Pernapasan Akut (ISPA) adalah penyakit yang menyerang pernapasan bawah dan pernapasan atas dapat mengakibatkan kematian. Menurut Badan Pusat Statistik Kabupaten Karawang pada tahun 2017 melaporkan 173.953 kasus ISPA dan meningkat menjadi 175.891 pada tahun 2018. Belum adanya perhatian khusus pada daerah tersebut yang menjadikan penyakit ini terus meningkat. Pada penelitian ini adalah clustering penyakit ISPA menggunakan algoritma K-Means dengan Cross-Industry Standard Process for Data Mining (CRISP-DM). Di mana pada penelitian sebelumnya menyimpulkan bahwa teknik clustering yang paling optimal adalah metode K-Means karena hasilnya lebih akurat dalam pengelompokan data dan tidak menggunakan tahap CRISP-DM. Untuk itu diperlukannya clustering daerah penyebaran ISPA yang terbagi menjadi tiga cluster yaitu rendah, sedang, dan tinggi sehingga dapat membantu dalam pengambilan kebijakan terhadap penyakit ISPA oleh pemerintah Kabupaten Karawang. Hasilnya adalah tahun 2017 terdapat 30 anggota cluster rendah, 9 anggota cluster sedang, dan 11 anggota cluster tinggi. Tahun 2018 terdapat 33 anggota cluster rendah, 5 anggota cluster sedang, dan 12 anggota cluster tinggi. Tahun 2019 terdapat 20 anggota cluster rendah, 25 anggota cluster sedang, dan 5 anggota cluster tinggi. Evaluasi algoritma K-Means menggunakan SSE pada tahun 2017 yaitu 232.6133, 2018 yaitu 207.8584, dan tahun 2019 yaitu 260.3935.