Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Journal of Robotics and Control (JRC)

Analysis and Performance Comparison of Fuzzy Inference Systems in Handling Uncertainty: A Review Furizal, Furizal; Ma'arif, Alfian; Wijaya, Setiawan Ardi; Murni, Murni; Suwarno, Iswanto
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.22123

Abstract

Uncertainty is an inevitable characteristic in human life and systems, posing challenges in decision-making and data analysis. Fuzzy theory emerges to address this uncertainty by describing variables with vague or uncertain values, one of which is the Fuzzy Inference System (FIS). This research analyzes and compares the performance of FIS from previous studies as a solution to manage uncertainty. FIS allows for flexible and responsive representations of truth levels using human-like linguistic rules. Common FIS methods include FIS-M, FIS-T, and FIS-S, each with different inference and defuzzification approaches. The findings of this research review, referencing previous studies, indicate that the application of FIS in various contexts such as prediction, medical diagnosis, and financial decision-making, yields very high accuracy levels up to 99%. However, accuracy comparisons show variations, with FIS-M tending to achieve more stable accuracy based on the referenced studies. The accuracy difference among FIS-M studies is not significantly different, only around 7.55%. Meanwhile, FIS-S has a wider accuracy range, from 81.48% to 99% (17.52%). FIS-S performs best if it can determine influencing factors well, such as determining constant values in its fuzzy rules. Additionally, the performance comparison of FIS can also be influenced by other factors such as data complexity, variables, domain, membership functions (curves), fuzzy rules, and defuzzification methods used in the study. Therefore, it is important to consider these factors and select the most suitable FIS method to manage uncertainty in the given situation.
Application of Machine Learning in Healthcare and Medicine: A Review Furizal, Furizal; Ma'arif, Alfian; Rifaldi, Dianda
Journal of Robotics and Control (JRC) Vol 4, No 5 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i5.19640

Abstract

This extensive literature review investigates the integration of Machine Learning (ML) into the healthcare sector, uncovering its potential, challenges, and strategic resolutions. The main objective is to comprehensively explore how ML is incorporated into medical practices, demonstrate its impact, and provide relevant solutions. The research motivation stems from the necessity to comprehend the convergence of ML and healthcare services, given its intricate implications. Through meticulous analysis of existing research, this method elucidates the broad spectrum of ML applications in disease prediction and personalized treatment. The research's precision lies in dissecting methodologies, scrutinizing studies, and extrapolating critical insights. The article establishes that ML has succeeded in various aspects of medical care. In certain studies, ML algorithms, especially Convolutional Neural Networks (CNNs), have achieved high accuracy in diagnosing diseases such as lung cancer, colorectal cancer, brain tumors, and breast tumors. Apart from CNNs, other algorithms like SVM, RF, k-NN, and DT have also proven effective. Evaluations based on accuracy and F1-score indicate satisfactory results, with some studies exceeding 90% accuracy. This principal finding underscores the impressive accuracy of ML algorithms in diagnosing diverse medical conditions. This outcome signifies the transformative potential of ML in reshaping conventional diagnostic techniques. Discussions revolve around challenges like data quality, security risks, potential misinterpretations, and obstacles in integrating ML into clinical realms. To mitigate these, multifaceted solutions are proposed, encompassing standardized data formats, robust encryption, model interpretation, clinician training, and stakeholder collaboration.
Temperature and Humidity Control System with Air Conditioner Based on Fuzzy Logic and Internet of Things Furizal, Furizal; Sunardi, Sunardi; Yudhana, Anton
Journal of Robotics and Control (JRC) Vol 4, No 3 (2023)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v4i3.18327

Abstract

Work is an activity that takes most of the day to earn a living and improve the standard of living. During work, many people have to work indoors, which can be a less comfortable and unhealthy place if the temperature and humidity are not well controlled. Unsuitable temperature and humidity conditions can negatively affect the health and comfort of workers, as well as interfere with productivity and work quality. However, the problem that often arises is the difficulty of controlling room temperature and humidity effectively, especially in rooms that are closed and do not get air circulation from outside. Therefore, an effective solution is needed to control the temperature and humidity of the room automatically and remotely via the internet. The contribution of this research is to develop an effective and efficient AC control system in controlling room temperature and humidity using Tsukamoto's Fuzzy Inference System (FIS) method and the Internet of Things (IoT). Tsukamoto's FIS is used to produce AC temperature values in room temperature and humidity control as measured by the DHT22 sensor directly integrated with the ESP32 microcontroller. This control system is monitored remotely using IoT concepts through a mobile application interface. The results of this study show that room temperature can be controlled under normal conditions, with an average change of -1.67°C and an overall average temperature of 25.95°C. While the average humidity is at a value of 80.16% which is included in the Wet set. This suggests that humidity cannot be controlled under normal conditions, so it still requires further development. In addition, it is also necessary to further investigate the effectiveness of the tool in various sizes and more complex layouts of rooms.
Stock Price Forecasting with Multivariate Time Series Long Short-Term Memory: A Deep Learning Approach Furizal, Furizal; Ritonga, Asdelina; Ma’arif, Alfian; Suwarno, Iswanto
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22460

Abstract

Stocks with their inherent complexity and dynamic nature influenced by a multitude of external and internal factors, play a crucial role in investment analysis and trend prediction. As financial instruments representing ownership in a company, stocks not only reflect the company's performance but are also affected by external factors such as economic conditions, political climates, and social changes. In a rapidly changing environment, investors and analysts continuously develop models and algorithms to aid in making timely and effective investment decisions. This study applies a Sequential model to predict stock data using a LSTM neural network. The model consists of a single hidden LSTM layer with 200 units. The LSTM layer, the core element of this model, enables it to capture temporal patterns and long-term relationships within the data. The training and testing data were divided into 80% for training and 20% for testing. The Adam optimizer was chosen to optimize the model's learning process, with a learning rate of 0.001. Dropout techniques were applied to reduce overfitting, with a dropout rate of 0.4, along with batch normalization and ReLU activation functions to enhance model performance. Additionally, callback mechanisms, including ReduceLROnPlateau and EarlyStopping, were used to optimize the training process and prevent overfitting. The model was evaluated using MAE and MSE metrics on training, testing, and future prediction data. The results indicate that the model achieved high accuracy, with an MAE of 0.0142 on the test data. However, future predictions showed higher MAE values, suggesting room for improvement in long-term forecasting. The model's ability to accurately predict future stock closing prices can assist investors in making informed investment decisions.
Stock Price Forecasting with Multivariate Time Series Long Short-Term Memory: A Deep Learning Approach Furizal, Furizal; Ritonga, Asdelina; Ma’arif, Alfian; Suwarno, Iswanto
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.22460

Abstract

Stocks with their inherent complexity and dynamic nature influenced by a multitude of external and internal factors, play a crucial role in investment analysis and trend prediction. As financial instruments representing ownership in a company, stocks not only reflect the company's performance but are also affected by external factors such as economic conditions, political climates, and social changes. In a rapidly changing environment, investors and analysts continuously develop models and algorithms to aid in making timely and effective investment decisions. This study applies a Sequential model to predict stock data using a LSTM neural network. The model consists of a single hidden LSTM layer with 200 units. The LSTM layer, the core element of this model, enables it to capture temporal patterns and long-term relationships within the data. The training and testing data were divided into 80% for training and 20% for testing. The Adam optimizer was chosen to optimize the model's learning process, with a learning rate of 0.001. Dropout techniques were applied to reduce overfitting, with a dropout rate of 0.4, along with batch normalization and ReLU activation functions to enhance model performance. Additionally, callback mechanisms, including ReduceLROnPlateau and EarlyStopping, were used to optimize the training process and prevent overfitting. The model was evaluated using MAE and MSE metrics on training, testing, and future prediction data. The results indicate that the model achieved high accuracy, with an MAE of 0.0142 on the test data. However, future predictions showed higher MAE values, suggesting room for improvement in long-term forecasting. The model's ability to accurately predict future stock closing prices can assist investors in making informed investment decisions.
Concerns of Ethical and Privacy in the Rapid Advancement of Artificial Intelligence: Directions, Challenges, and Solutions Furizal, Furizal; Ramelan, Agus; Adriyanto, Feri; Maghfiroh, Hari; Ma'arif, Alfian; Kariyamin, Kariyamin; Masitha, Alya; Fawait, Aldi Bastiatul
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.24090

Abstract

AI is a transformative technology that emulates human cognitive abilities and processes large volumes of data to offer efficient solutions across various sectors of life. Although AI significantly enhances efficiency in many areas, it also presents substantial challenges, particularly regarding ethics and user privacy. These challenges are exacerbated by the inadequacy of global regulations, which may lead to potential abuse and privacy violations. This study provides an in-depth review of current AI applications, identifies future needs, and addresses emerging ethical and privacy issues. The research explores the important roles of AI technologies, including multimodal AI, natural language processing, generative AI, and deepfakes. While these technologies have the potential to revolutionize industries such as content creation and digital interactions, they also face significant privacy and ethical challenges, including the risks of deepfake abuse and the need for improved data protection through platforms like PrivAI. The study emphasizes the necessity for stricter regulations and global efforts to ensure ethical AI use and effective privacy protection. By conducting a comprehensive literature review, this research aims to provide a clear perspective on the future direction of AI and propose strategies to overcome barriers in ethical and privacy practices.