Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Computer Networks, Architecture and High Performance Computing

Breast Cancer Classification Using Naïve Bayes and Random Forest Algorithms Gurning, Riris Naomi; Sulaeman, Asep Arwan; Afandi, Dedi
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 3 (2025): Articles Research July 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i3.6609

Abstract

Breast cancer is one of the leading causes of death among women in Indonesia. Therefore, early detection is crucial to improving the chances of successful treatment. This study was conducted to evaluate the performance differences between the Naïve Bayes and Random Forest algorithms in classifying breast cancer data. The dataset used was sourced from Kaggle, and the entire data processing and model analysis process was performed using RapidMiner software. Data was split into 80% for training and 20% for testing to ensure optimal model evaluation. Evaluation was conducted using accuracy, precision, and recall metrics. The findings of this study indicate that Random Forest is capable of producing more effective classification performance than Naïve Bayes. Random Forest achieved an accuracy of 99.27%, recall of 99.27%, and precision of 99.30%. Meanwhile, the Naïve Bayes algorithm only achieved an accuracy of 83.78% with recall and precision of 83.80% each. The superiority of Random Forest is believed to stem from its ensemble approach, which can handle data complexity and reduce the risk of overfitting, thereby providing more accurate and stable prediction results. Based on these results, Random Forest is considered more suitable for use in machine learning-based early breast cancer detection systems. This study is expected to serve as a reference for the development of medical decision support systems and to encourage the use of classification technology in the field of health.
Twitter Sentiment Towards 2024 Jakarta Governor Candidates With Naïve Bayes Algorithm Abei, Fikri; Sulaeman, Asep Arwan; Suprapto, Suprapto
Journal of Computer Networks, Architecture and High Performance Computing Vol. 7 No. 1 (2025): Article Research January 2025
Publisher : Information Technology and Science (ITScience)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/cnahpc.v7i1.5358

Abstract

This study aims to analyze public sentiment towards candidates for the 2024 Governor of DKI Jakarta through the Twitter platform, with a focus on classifying positive and negative sentiment. Along with the rapid development of social media, Twitter has become the main channel for people to voice political opinions. Sentiment analysis was conducted using the Naive Bayes algorithm to classify the sentiment of tweets collected through crawling techniques during the campaign period. The data used includes user tweets, with features such as frequently occurring words, popular hashtags, and discussion topics related to each gubernatorial candidate. The results showed that the Naive Bayes algorithm provided the best performance in classifying sentiment data in the period August 1 to December 26, 2024, with the highest accuracy rate reaching 75% at a data ratio of 90:10. This research also identified challenges in sentiment classification, such as the presence of new terms in test documents that are not recognized by the training model. The findings are expected to provide a clearer picture of public perceptions of gubernatorial candidates and contribute to the analysis of political sentiment on social media